Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Low Rank Tensor Representation of Linear Transport and Nonlinear Vlasov Solutions and Their Associated Flow Maps (2106.08834v2)

Published 16 Jun 2021 in math.NA and cs.NA

Abstract: We propose a low-rank tensor approach to approximate linear transport and nonlinear Vlasov solutions and their associated flow maps. The approach takes advantage of the fact that the differential operators in the Vlasov equation is tensor friendly, based on which we propose a novel way to dynamically and adaptively build up low-rank solution basis by adding new basis functions from discretization of the PDE, and removing basis from an SVD-type truncation procedure. For the discretization, we adopt a high order finite difference spatial discretization and a second order strong stability preserving multi-step time discretization. We apply the same procedure to evolve the dynamics of the flow map in a low-rank fashion, which proves to be advantageous when the flow map enjoys the low rank structure, while the solution suffers from high rank or displays filamentation structures. Hierarchical Tucker decomposition is adopted for high dimensional problems. An extensive set of linear and nonlinear Vlasov test examples are performed to show the high order spatial and temporal convergence of the algorithm with mesh refinement up to SVD-type truncation, the significant computational savings of the proposed low-rank approach especially for high dimensional problems, the improved performance of the flow map approach for solutions with filamentations.

Citations (23)

Summary

We haven't generated a summary for this paper yet.