Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis (2406.18114v3)

Published 26 Jun 2024 in cs.IR

Abstract: Failure mode and effects analysis (FMEA) is an essential tool for mitigating potential failures, particularly during the ramp-up phases of new products. However, its effectiveness is often limited by the reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, LLMs offer novel prospects for advanced natural language processing tasks. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a LLM to generate responses. Building on this concept, we propose to enhance the non-parametric data store with a knowledge graph (KG). By integrating a KG into the RAG framework, we aim to leverage analytical and semantic question-answering capabilities for FMEA data. This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework. Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.

Citations (3)

Summary

We haven't generated a summary for this paper yet.