Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-GCN: A Dynamically Weighted Loss Minimization Method for Dealing with the Data Imbalance in Graph Neural Networks (2406.17073v2)

Published 24 Jun 2024 in cs.LG and cs.AI

Abstract: Although many real-world applications, such as disease prediction, and fault detection suffer from class imbalance, most existing graph-based classification methods ignore the skewness of the distribution of classes; therefore, tend to be biased towards the majority class(es). Conventional methods typically tackle this problem through the assignment of weights to each one of the class samples based on a function of their loss, which can lead to over-fitting on outliers. In this paper, we propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights by simultaneously minimizing the unbiased meta-data set loss and optimizing the model weights through the use of a small unbiased meta-data set. Through experiments, we have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy, the area under the receiver operating characteristic (AUC-ROC) curve, and macro F1-Score for classification tasks on two different datasets.

Summary

We haven't generated a summary for this paper yet.