Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imbalanced Classification via Explicit Gradient Learning From Augmented Data (2202.10550v2)

Published 21 Feb 2022 in cs.LG

Abstract: Learning from imbalanced data is one of the most significant challenges in real-world classification tasks. In such cases, neural networks performance is substantially impaired due to preference towards the majority class. Existing approaches attempt to eliminate the bias through data re-sampling or re-weighting the loss in the learning process. Still, these methods tend to overfit the minority samples and perform poorly when the structure of the minority class is highly irregular. Here, we propose a novel deep meta-learning technique to augment a given imbalanced dataset with new minority instances. These additional data are incorporated in the classifier's deep-learning process, and their contributions are learned explicitly. The advantage of the proposed method is demonstrated on synthetic and real-world datasets with various imbalance ratios.

Summary

We haven't generated a summary for this paper yet.