Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Capability of Mamba in Speech Applications (2406.16808v1)

Published 24 Jun 2024 in cs.SD and eess.AS

Abstract: This paper explores the capability of Mamba, a recently proposed architecture based on state space models (SSMs), as a competitive alternative to Transformer-based models. In the speech domain, well-designed Transformer-based models, such as the Conformer and E-Branchformer, have become the de facto standards. Extensive evaluations have demonstrated the effectiveness of these Transformer-based models across a wide range of speech tasks. In contrast, the evaluation of SSMs has been limited to a few tasks, such as automatic speech recognition (ASR) and speech synthesis. In this paper, we compared Mamba with state-of-the-art Transformer variants for various speech applications, including ASR, text-to-speech, spoken language understanding, and speech summarization. Experimental evaluations revealed that Mamba achieves comparable or better performance than Transformer-based models, and demonstrated its efficiency in long-form speech processing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Koichi Miyazaki (6 papers)
  2. Yoshiki Masuyama (30 papers)
  3. Masato Murata (4 papers)
Citations (8)
X Twitter Logo Streamline Icon: https://streamlinehq.com