Gradient-Mask Tuning Elevates the Upper Limits of LLM Performance (2406.15330v1)
Abstract: LLMs have revolutionized lots of fields of research. Although it is well-known that fine-tuning is essential for enhancing the capabilities of LLMs, existing research suggests that there is potential redundancy in the fine-tuning process and therefore proposes to update only a subset of parameters. However, these methods fail to leverage the task-specific information to identify important parameters during training. Based on the insight that gradients inherently contain information on task-specific data, we propose Gradient-Mask Tuning (GMT), a method that selectively updates parameters during training based on their gradient information. Specifically, we compute the absolute values of the gradients and apply masking to those with relatively smaller magnitudes. Our empirical results across various tasks demonstrate that GMT not only outperforms traditional fine-tuning methods but also elevates the upper limits of LLM performance. Further analysis indicates that GMT exhibits insensitivity to mask ratio and possesses computational efficiency comparable to vanilla SFT.
- Haoling Li (13 papers)
- Xin Zhang (904 papers)
- Xiao Liu (402 papers)
- Yeyun Gong (78 papers)
- Yifan Wang (319 papers)
- Yujiu Yang (155 papers)
- Qi Chen (194 papers)
- Peng Cheng (229 papers)