Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning (2406.10479v1)

Published 15 Jun 2024 in cs.AI

Abstract: LLMs have demonstrated impressive task-solving capabilities, achieved through either prompting techniques or system designs. However, concerns have arisen regarding their proficiency in planning tasks, as they often struggle to generate valid plans. This paper investigates the impact of fine-tuning on LLMs' planning capabilities. Our findings indicate that LLMs can achieve good performance in planning through substantial (thousands of specific examples) fine-tuning. However, fine-tuning is associated with significant economic and computational costs. To address this challenge, we propose the Maximum Diversity Fine-Tuning (MDFT) strategy to improve the sample efficiency of fine-tuning in the planning domain. Specifically, our algorithm, referred to as MDFT-g, encodes the planning task instances with their graph representations and selects a subset of samples in the vector space that maximizes data diversity. We empirically demonstrate that MDFT-g consistently outperforms existing baselines at various scales across multiple benchmark domains.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets