Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Few-shot Transfer Learning for Knowledge Base Question Answering with Unanswerable Questions (2406.14313v1)

Published 20 Jun 2024 in cs.CL and cs.AI

Abstract: Real-world KBQA applications require models that are (1) robust -- e.g., can differentiate between answerable and unanswerable questions, and (2) low-resource -- do not require large training data. Towards this goal, we propose the novel task of few-shot transfer for KBQA with unanswerable questions. We present FUn-FuSIC that extends the state-of-the-art (SoTA) few-shot transfer model for answerable-only KBQA to handle unanswerability. It iteratively prompts an LLM to generate logical forms for the question by providing feedback using a diverse suite of syntactic, semantic and execution guided checks, and adapts self-consistency to assess confidence of the LLM to decide answerability. Experiments over newly constructed datasets show that FUn-FuSIC outperforms suitable adaptations of the SoTA model for KBQA with unanswerability, and the SoTA model for answerable-only few-shot-transfer KBQA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Riya Sawhney (2 papers)
  2. Indrajit Bhattacharya (13 papers)
  3. Mausam (69 papers)