Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Make a Choice! Knowledge Base Question Answering with In-Context Learning (2305.13972v1)

Published 23 May 2023 in cs.CL

Abstract: Question answering over knowledge bases (KBQA) aims to answer factoid questions with a given knowledge base (KB). Due to the large scale of KB, annotated data is impossible to cover all fact schemas in KB, which poses a challenge to the generalization ability of methods that require a sufficient amount of annotated data. Recently, LLMs have shown strong few-shot performance in many NLP tasks. We expect LLM can help existing methods improve their generalization ability, especially in low-resource situations. In this paper, we present McL-KBQA, a framework that incorporates the few-shot ability of LLM into the KBQA method via ICL-based multiple choice and then improves the effectiveness of the QA tasks. Experimental results on two KBQA datasets demonstrate the competitive performance of McL-KBQA with strong improvements in generalization. We expect to explore a new way to QA tasks from KBQA in conjunction with LLM, how to generate answers normatively and correctly with strong generalization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chuanyuan Tan (6 papers)
  2. Yuehe Chen (3 papers)
  3. Wenbiao Shao (3 papers)
  4. Wenliang Chen (33 papers)
Citations (11)