Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surgical Triplet Recognition via Diffusion Model (2406.13210v2)

Published 19 Jun 2024 in cs.CV and cs.AI

Abstract: Surgical triplet recognition is an essential building block to enable next-generation context-aware operating rooms. The goal is to identify the combinations of instruments, verbs, and targets presented in surgical video frames. In this paper, we propose DiffTriplet, a new generative framework for surgical triplet recognition employing the diffusion model, which predicts surgical triplets via iterative denoising. To handle the challenge of triplet association, two unique designs are proposed in our diffusion framework, i.e., association learning and association guidance. During training, we optimize the model in the joint space of triplets and individual components to capture the dependencies among them. At inference, we integrate association constraints into each update of the iterative denoising process, which refines the triplet prediction using the information of individual components. Experiments on the CholecT45 and CholecT50 datasets show the superiority of the proposed method in achieving a new state-of-the-art performance for surgical triplet recognition. Our codes will be released.

Summary

We haven't generated a summary for this paper yet.