Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disturbing Image Detection Using LMM-Elicited Emotion Embeddings (2406.12668v1)

Published 18 Jun 2024 in cs.CV

Abstract: In this paper we deal with the task of Disturbing Image Detection (DID), exploiting knowledge encoded in Large Multimodal Models (LMMs). Specifically, we propose to exploit LMM knowledge in a two-fold manner: first by extracting generic semantic descriptions, and second by extracting elicited emotions. Subsequently, we use the CLIP's text encoder in order to obtain the text embeddings of both the generic semantic descriptions and LMM-elicited emotions. Finally, we use the aforementioned text embeddings along with the corresponding CLIP's image embeddings for performing the DID task. The proposed method significantly improves the baseline classification accuracy, achieving state-of-the-art performance on the augmented Disturbing Image Detection dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.