Holographic Classical Shadow Tomography (2406.11788v1)
Abstract: We introduce "holographic shadows", a new class of randomized measurement schemes for classical shadow tomography that achieves the optimal scaling of sample complexity for learning geometrically local Pauli operators at any length scale, without the need for fine-tuning protocol parameters such as circuit depth or measurement rate. Our approach utilizes hierarchical quantum circuits, such as tree quantum circuits or holographic random tensor networks. Measurements within the holographic bulk correspond to measurements at different scales on the boundary (i.e. the physical system of interests), facilitating efficient quantum state estimation across observable at all scales. Considering the task of estimating string-like Pauli observables supported on contiguous intervals of $k$ sites in a 1D system, our method achieves an optimal sample complexity scaling of $\sim dk\mathrm{poly}(k)$, with $d$ the local Hilbert space dimension. We present a holographic minimal cut framework to demonstrate the universality of this sample complexity scaling and validate it with numerical simulations, illustrating the efficacy of holographic shadows in enhancing quantum state learning capabilities.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.