Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Holographic Classical Shadow Tomography (2406.11788v1)

Published 17 Jun 2024 in quant-ph, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: We introduce "holographic shadows", a new class of randomized measurement schemes for classical shadow tomography that achieves the optimal scaling of sample complexity for learning geometrically local Pauli operators at any length scale, without the need for fine-tuning protocol parameters such as circuit depth or measurement rate. Our approach utilizes hierarchical quantum circuits, such as tree quantum circuits or holographic random tensor networks. Measurements within the holographic bulk correspond to measurements at different scales on the boundary (i.e. the physical system of interests), facilitating efficient quantum state estimation across observable at all scales. Considering the task of estimating string-like Pauli observables supported on contiguous intervals of $k$ sites in a 1D system, our method achieves an optimal sample complexity scaling of $\sim dk\mathrm{poly}(k)$, with $d$ the local Hilbert space dimension. We present a holographic minimal cut framework to demonstrate the universality of this sample complexity scaling and validate it with numerical simulations, illustrating the efficacy of holographic shadows in enhancing quantum state learning capabilities.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.