Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Prediction Accuracy of Learning in Games : Follow-the-Regularized-Leader meets Heisenberg (2406.10603v1)

Published 15 Jun 2024 in cs.GT

Abstract: We investigate the accuracy of prediction in deterministic learning dynamics of zero-sum games with random initializations, specifically focusing on observer uncertainty and its relationship to the evolution of covariances. Zero-sum games are a prominent field of interest in machine learning due to their various applications. Concurrently, the accuracy of prediction in dynamical systems from mechanics has long been a classic subject of investigation since the discovery of the Heisenberg Uncertainty Principle. This principle employs covariance and standard deviation of particle states to measure prediction accuracy. In this study, we bring these two approaches together to analyze the Follow-the-Regularized-Leader (FTRL) algorithm in two-player zero-sum games. We provide growth rates of covariance information for continuous-time FTRL, as well as its two canonical discretization methods (Euler and Symplectic). A Heisenberg-type inequality is established for FTRL. Our analysis and experiments also show that employing Symplectic discretization enhances the accuracy of prediction in learning dynamics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.