Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust portfolio optimization for recommender systems considering uncertainty of estimated statistics (2406.10250v2)

Published 9 Jun 2024 in cs.IR, cs.LG, and math.OC

Abstract: This paper is concerned with portfolio optimization models for creating high-quality lists of recommended items to balance the accuracy and diversity of recommendations. However, the statistics (i.e., expectation and covariance of ratings) required for mean--variance portfolio optimization are subject to inevitable estimation errors. To remedy this situation, we focus on robust optimization techniques that derive reliable solutions to uncertain optimization problems. Specifically, we propose a robust portfolio optimization model that copes with the uncertainty of estimated statistics based on the cardinality-based uncertainty sets. This robust portfolio optimization model can be reduced to a mixed-integer linear optimization problem, which can be solved exactly using mathematical optimization solvers. Experimental results using two publicly available rating datasets demonstrate that our method can improve not only the recommendation accuracy but also the diversity of recommendations compared with conventional mean--variance portfolio optimization models. Notably, our method has the potential to improve the recommendation quality of various rating prediction algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com