Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Probability--Quality Trade-off in Aligned Language Models and its Relation to Sampling Adaptors (2406.10203v4)

Published 14 Jun 2024 in cs.CL

Abstract: The relationship between the quality of a string, as judged by a human reader, and its probability, $p(\boldsymbol{y})$ under a LLM undergirds the development of better LLMs. For example, many popular algorithms for sampling from a LLM have been conceived with the goal of manipulating $p(\boldsymbol{y})$ to place higher probability on strings that humans deem of high quality. In this article, we examine the probability--quality relationship in LLMs explicitly aligned to human preferences, e.g., through reinforcement learning through human feedback. We show that, when sampling corpora from an aligned LLM, there exists a trade-off between the strings' average reward and average log-likelihood under the prior LLM, i.e., the same model before alignment with human preferences. We provide a formal treatment of this phenomenon and demonstrate how a choice of sampling adaptor allows for a selection of how much likelihood we exchange for the reward.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets