Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multivocal Review of MLOps Practices, Challenges and Open Issues (2406.09737v1)

Published 14 Jun 2024 in cs.SE

Abstract: With the increasing trend of Machine Learning (ML) enabled software applications, the paradigm of ML Operations (MLOps) has gained tremendous attention of researchers and practitioners. MLOps encompasses the practices and technologies for streamlining the resources and monitoring needs of operationalizing ML models. Software development practitioners need access to the detailed and easily understandable knowledge of MLOps workflows, practices, challenges and solutions to effectively and efficiently support the adoption of MLOps. Whilst the academic and industry literature on the MLOps has been growing rapidly, there have been relatively a few attempts at systematically synthesizing and analyzing the vast amount of existing literature of MLOps for improving ease of access and understanding. We conducted a Multivocal Literature Review (MLR) of 150 relevant academic studies and 48 gray literature to provide a comprehensive body of knowledge on MLOps. Through this MLR, we identified the emerging MLOps practices, adoption challenges and solutions related to various areas, including development and operation of complex pipelines, managing production at scale, managing artifacts, and ensuring quality, security, governance, and ethical aspects. We also report the socio-technical aspect of MLOps relating to diverse roles involved and collaboration practices across them through the MLOps lifecycle. We assert that this MLR provides valuable insights to researchers and practitioners seeking to navigate the rapidly evolving landscape of MLOps. We also identify the open issues that need to be addressed in order to advance the current state-of-the-art of MLOps.

Summary

We haven't generated a summary for this paper yet.