Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

RASPNet: A Benchmark Dataset for Radar Adaptive Signal Processing Applications (2406.09638v2)

Published 14 Jun 2024 in cs.LG and eess.SP

Abstract: We present a large-scale dataset for radar adaptive signal processing (RASP) applications to support the development of data-driven models within the adaptive radar community. The dataset, RASPNet, exceeds 16 TB in size and comprises 100 realistic scenarios compiled over a variety of topographies and land types from across the contiguous United States. For each scenario, RASPNet consists of 10,000 clutter realizations from an airborne radar setting, which can be used to benchmark radar and complex-valued learning algorithms. RASPNet intends to fill a prominent gap in the availability of a large-scale, realistic dataset that standardizes the evaluation of adaptive radar processing techniques and complex-valued neural networks. We outline its construction, organization, and several applications, including a transfer learning example to demonstrate how RASPNet can be used for realistic adaptive radar processing scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.