Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Target Localization Using Adaptive Radar Processing and Convolutional Neural Networks (2209.02890v6)

Published 7 Sep 2022 in cs.CV and eess.SP

Abstract: Leveraging the advanced functionalities of modern radio frequency (RF) modeling and simulation tools, specifically designed for adaptive radar processing applications, this paper presents a data-driven approach to improve accuracy in radar target localization post adaptive radar detection. To this end, we generate a large number of radar returns by randomly placing targets of variable strengths in a predefined area, using RFView, a high-fidelity, site-specific, RF modeling & simulation tool. We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic. We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors, and we compare the target localization accuracy of this approach with that of peak-finding and local search methods. This empirical study shows that our regression CNN achieves a considerable improvement in target location estimation accuracy. The regression CNN offers significant gains and reasonable accuracy even at signal-to-clutter-plus-noise ratio (SCNR) regimes that are close to the breakdown threshold SCNR of the NAMF. We also study the robustness of our trained CNN to mismatches in the radar data, where the CNN is tested on heatmap tensors collected from areas that it was not trained on. We show that our CNN can be made robust to mismatches in the radar data through few-shot learning, using a relatively small number of new training samples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. S. Kraut, L. Scharf, and L. McWhorter, “Adaptive subspace detectors,” IEEE Transactions on Signal Processing, vol. 49, no. 1, pp. 1–16, 2001.
  2. W. Melvin, M. Wicks, and R. Brown, “Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms,” in Proceedings of the 1996 IEEE National Radar Conference, 1996, pp. 130–135.
  3. J. Guerci, J. Goldstein, and I. Reed, “Optimal and adaptive reduced-rank stap,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 2, pp. 647–663, 2000.
  4. R. Raghavan, H. Qiu, and D. McLaughlin, “Cfar detection in clutter with unknown correlation properties,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 2, pp. 647–657, 1995.
  5. S. Gogineni, J. R. Guerci, H. K. Nguyen, J. S. Bergin, D. R. Kirk, B. C. Watson, and M. Rangaswamy, “High fidelity rf clutter modeling and simulation,” IEEE Aerospace and Electronic Systems Magazine, vol. 37, no. 11, pp. 24–43, 2022.
  6. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” Citeseer, 2009.
  7. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.
  8. F. Benaych-Georges and R. R. Nadakuditi, “The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices,” Advances in Mathematics, vol. 227, no. 1, pp. 494–521, 2011.
  9. S. Gogineni, P. Setlur, M. Rangaswamy, and R. R. Nadakuditi, “Passive radar detection with noisy reference channel using principal subspace similarity,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 1, pp. 18–36, 2018.
  10. R. R. Nadakuditi, “Fundamental finite-sample limit of canonical correlation analysis based detection of correlated high-dimensional signals in white noise,” in 2011 IEEE Statistical Signal Processing Workshop (SSP), 2011, pp. 397–400.
  11. M. Rangaswamy and F. Lin, “Normalized adaptive matched filter - a low rank approach,” in Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795), 2003, pp. 182–185.
  12. E. Conte, “Multistatic radar detection: synthesis and comparison of optimum and suboptimum receivers,” IEE Proceedings F (Communications, Radar and Signal Processing), vol. 130, pp. 484–494(10), October 1983.
  13. L. Scharf and L. McWhorter, “Adaptive matched subspace detectors and adaptive coherence estimators,” in Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, pp. 1114–1117 vol.2.
  14. L. L. Scharf, T. L. McWhorter, and L. J. Griffiths, “Adaptive coherence estimation for radar signal processing,” in Proceedings of the 30th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1996.
  15. S. Kraut, T. L. McWhorter, and L. L. Scharf, “A canonical representation for the distributions of adaptive matched subspace detectors,” in Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1997.
  16. S. Venkatasubramanian, C. Wongkamthong, M. Soltani, B. Kang, S. Gogineni, A. Pezeshki, M. Rangaswamy, and V. Tarokh, “Toward data-driven stap radar,” in 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1–5.
  17. J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.
  18. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.   Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
  19. D. Tufts, A. Kot, and R. Vaccaro, “The threshold effect in signal processing algorithms which use an estimated subspace,” in SVD and Signal Processing II: Algorithms, Analysis and Applications.   New York, NY, USA: Elsevier, 1991, pp. 301–320.
  20. J. K. Thomas, L. L. Scharf, and D. W. Tufts, “The probability of a subspace swap in the svd,” IEEE Trans. Signal Process., vol. 43, no. 3, pp. 730–736, 1995.
  21. P. Pakrooh, L. L. Scharf, and A. Pezeshki, “Threshold effects in parameter estimation from compressed data,” IEEE Trans. Signal Processing, vol. 64, no. 9, pp. 2345–2354, May 2016.
  22. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference for Learning Representations, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
  23. L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006.
  24. O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching networks for one shot learning,” in Advances in Neural Information Processing Systems (NeurIPS), 2016, pp. 3630–3638.
  25. S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017.
  26. F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales, “Learning to compare: Relation network for few-shot learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1199–1208.
  27. M. Fink, “Object classification from a single example utilizing class relevance metrics,” in Advances in Neural Information Processing Systems, L. Saul, Y. Weiss, and L. Bottou, Eds., vol. 17.   MIT Press, 2004.
  28. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  29. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.
  30. Z. Shen, Z. Liu, J. Qin, M. Savvides, and K.-T. Cheng, “Partial is better than all: Revisiting fine-tuning strategy for few-shot learning,” 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.