Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Optimal Gait Design for a Soft Quadruped Robot via Multi-fidelity Bayesian Optimization (2406.07065v1)

Published 11 Jun 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This study focuses on the locomotion capability improvement in a tendon-driven soft quadruped robot through an online adaptive learning approach. Leveraging the inverse kinematics model of the soft quadruped robot, we employ a central pattern generator to design a parametric gait pattern, and use Bayesian optimization (BO) to find the optimal parameters. Further, to address the challenges of modeling discrepancies, we implement a multi-fidelity BO approach, combining data from both simulation and physical experiments throughout training and optimization. This strategy enables the adaptive refinement of the gait pattern and ensures a smooth transition from simulation to real-world deployment for the controller. Moreover, we integrate a computational task off-loading architecture by edge computing, which reduces the onboard computational and memory overhead, to improve real-time control performance and facilitate an effective online learning process. The proposed approach successfully achieves optimal walking gait design for physical deployment with high efficiency, effectively addressing challenges related to the reality gap in soft robotics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.