Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Monadic ortholattices: completions and duality (2406.06917v1)

Published 11 Jun 2024 in math.LO and quant-ph

Abstract: We show that the variety of monadic ortholattices is closed under MacNeille and canonical completions. In each case, the completion of $L$ is obtained by forming an associated dual space $X$ that is a monadic orthoframe. This is a set with an orthogonality relation and an additional binary relation satisfying certain conditions. For the MacNeille completion, $X$ is formed from the non-zero elements of $L$, and for the canonical completion, $X$ is formed from the proper filters of $L$. The corresponding completion of $L$ is then obtained as the ortholattice of bi-orthogonally closed subsets of $X$ with an additional operation defined through the binary relation of $X$. With the introduction of a suitable topology on an orthoframe, as was done by Goldblatt and Bimb\'o, we obtain a dual adjunction between the categories of monadic ortholattices and monadic orthospaces. A restriction of this dual adjunction provides a dual equivalence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.