Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Generative Modeling Reshapes Compression and Transmission: From Efficiency to Resiliency (2406.06446v1)

Published 10 Jun 2024 in cs.IT, cs.LG, cs.MM, and math.IT

Abstract: Information theory and machine learning are inextricably linked and have even been referred to as "two sides of the same coin". One particularly elegant connection is the essential equivalence between probabilistic generative modeling and data compression or transmission. In this article, we reveal the dual-functionality of deep generative models that reshapes both data compression for efficiency and transmission error concealment for resiliency. We present how the contextual predictive capabilities of powerful generative models can be well positioned to be strong compressors and estimators. In this sense, we advocate for viewing the deep generative modeling problem through the lens of end-to-end communications, and evaluate the compression and error restoration capabilities of foundation generative models. We show that the kernel of many large generative models is powerful predictor that can capture complex relationships among semantic latent variables, and the communication viewpoints provide novel insights into semantic feature tokenization, contextual learning, and usage of deep generative models. In summary, our article highlights the essential connections of generative AI to source and channel coding techniques, and motivates researchers to make further explorations in this emerging topic.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.