Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Text and Image Pre-training for Multi-modal Algorithmic Reasoning (2406.05318v1)

Published 8 Jun 2024 in cs.CV and cs.AI

Abstract: In this paper, we present our solution for SMART-101 Challenge of CVPR Multi-modal Algorithmic Reasoning Task 2024. Unlike traditional visual questions and answer tasks, this challenge evaluates abstraction, deduction and generalization ability of neural network in solving visuo-linguistic puzzles designed for specially children in the 6-8 age group. Our model is based on two pre-trained models, dedicated to extract features from text and image respectively. To integrate the features from different modalities, we employed a fusion layer with attention mechanism. We explored different text and image pre-trained models, and fine-tune the integrated classifier on the SMART-101 dataset. Experiment results show that under the data splitting style of puzzle split, our proposed integrated classifier achieves superior performance, verifying the effectiveness of multi-modal pre-trained representations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zijian Zhang (125 papers)
  2. Wei Liu (1135 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com