Towards Universal Unfolding of Detector Effects in High-Energy Physics using Denoising Diffusion Probabilistic Models (2406.01507v3)
Abstract: Correcting for detector effects in experimental data, particularly through unfolding, is critical for enabling precision measurements in high-energy physics. However, traditional unfolding methods face challenges in scalability, flexibility, and dependence on simulations. We introduce a novel approach to multidimensional object-wise unfolding using conditional Denoising Diffusion Probabilistic Models (cDDPM). Our method utilizes the cDDPM for a non-iterative, flexible posterior sampling approach, incorporating distribution moments as conditioning information, which exhibits a strong inductive bias that allows it to generalize to unseen physics processes without explicitly assuming the underlying distribution. Our results highlight the potential of this method as a step towards a "universal" unfolding tool that reduces dependence on truth-level assumptions, while enabling the unfolding of a wide range of measured distributions with improved adaptability and accuracy.