Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbinned Profiled Unfolding (2302.05390v3)

Published 10 Feb 2023 in hep-ph, hep-ex, physics.data-an, and stat.ML

Abstract: Unfolding is an important procedure in particle physics experiments which corrects for detector effects and provides differential cross section measurements that can be used for a number of downstream tasks, such as extracting fundamental physics parameters. Traditionally, unfolding is done by discretizing the target phase space into a finite number of bins and is limited in the number of unfolded variables. Recently, there have been a number of proposals to perform unbinned unfolding with machine learning. However, none of these methods (like most unfolding methods) allow for simultaneously constraining (profiling) nuisance parameters. We propose a new machine learning-based unfolding method that results in an unbinned differential cross section and can profile nuisance parameters. The machine learning loss function is the full likelihood function, based on binned inputs at detector-level. We first demonstrate the method with simple Gaussian examples and then show the impact on a simulated Higgs boson cross section measurement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. G. Cowan, A survey of unfolding methods for particle physics, Conf. Proc. C 0203181, 248 (2002).
  2. V. Blobel, Unfolding Methods in Particle Physics, PHYSTAT2011 Proceedings , 240 (2011).
  3. V. Blobel, Unfolding, Data Analysis in High Energy Physics , 187 (2013).
  4. G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A362, 487 (1995).
  5. A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A372, 469 (1996), arXiv:hep-ph/9509307 [hep-ph] .
  6. S. Schmitt, TUnfold: an algorithm for correcting migration effects in high energy physics, JINST 7, T10003, arXiv:1205.6201 [physics.data-an] .
  7. M. Arratia et al., Publishing unbinned differential cross section results, JINST 17 (01), P01024, arXiv:2109.13243 [hep-ph] .
  8. K. Datta, D. Kar, and D. Roy, Unfolding with Generative Adversarial Networks,   (2018), arXiv:1806.00433 [physics.data-an] .
  9. D. P. Kingma and M. Welling, Auto-encoding variational bayes,   (2014), arXiv:1312.6114 [stat.ML] .
  10. D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, International Conference on Machine Learning 37, 1530 (2015).
  11. H1 Collaboration, Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding, Phys. Rev. Lett. 128, 132002 (2022a), arXiv:2108.12376 [hep-ex] .
  12. V. Andreev et al. (H1), Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding, Phys. Rev. Lett. 128, 132002 (2022), arXiv:2108.12376 [hep-ex] .
  13. H1 Collaboration, Multi-differential Jet Substructure Measurement in High Q2superscript𝑄2Q^{2}italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT DIS Events with HERA-II Data, H1prelim-22-034  (2022b).
  14. LHCb Collaboration, Multidifferential study of identified charged hadron distributions in Z𝑍Zitalic_Z-tagged jets in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV, arXiv:2208.11691  (2022).
  15. D. de Florian et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 2/2017, 10.23731/CYRM-2017-002 (2016), arXiv:1610.07922 [hep-ph] .
  16. J. R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders (2016) arXiv:1605.04692 [hep-ph] .
  17. N. Berger et al., Simplified Template Cross Sections - Stage 1.1,   (2019), arXiv:1906.02754 [hep-ph] .
  18. S. Amoroso et al., Les Houches 2019: Physics at TeV Colliders: Standard Model Working Group Report, in 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches (2020) arXiv:2003.01700 [hep-ph] .
  19. G. Choudalakis, Fully bayesian unfolding (2012).
  20. B. Nachman and J. Thaler, Neural Conditional Reweighting, Phys. Rev. D 105, 076015 (2022), arXiv:2107.08979 [physics.data-an] .
  21. M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio Estimation in Machine Learning (Cambridge University Press, 2012).
  22. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .
  23. C. Oleari, The POWHEG-BOX, Nucl. Phys. B Proc. Suppl. 205-206, 36 (2010), arXiv:1007.3893 [hep-ph] .
  24. T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05, 026, arXiv:hep-ph/0603175 [hep-ph] .
  25. J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science & Engineering 9, 90 (2007).
  26. J. Chan and B. Nachman, Higgs to diphoton channel at least 2 jet datasets, 10.5281/zenodo.7553271 (2023).
  27. L. Heinrich, M. Feickert, and G. Stark, pyhf: v0.7.0, https://github.com/scikit-hep/pyhf/releases/tag/v0.7.0.
Citations (7)

Summary

We haven't generated a summary for this paper yet.