Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 0.96pJ/SOP, 30.23K-neuron/mm^2 Heterogeneous Neuromorphic Chip With Fullerene-like Interconnection Topology for Edge-AI Computing (2406.01151v1)

Published 3 Jun 2024 in cs.AR

Abstract: Edge-AI computing requires high energy efficiency, low power consumption, and relatively high flexibility and compact area, challenging the AI-chip design. This work presents a 0.96 pJ/SOP heterogeneous neuromorphic system-on-chip (SoC) with fullerene-like interconnection topology for edge-AI computing. The neuromorphic core integrates different technologies to augment computing energy efficiency, including sparse computing, partial membrane potential updates, and non-uniform weight quantization. Multiple neuromorphic cores and multi-mode routers form a fullerene-like network-on-chip (NoC). The average degree of communication nodes exceeds traditional topologies by 32%, with a minimal degree variance of 0.93, allowing advanced decentralized on-chip communication. Additionally, the NoC can be scaled up through extended off-chip high-level router nodes. A RISC-V CPU and a neuromorphic processor are tightly coupled and fabricated within a 5.42 mm2 die area under 55 nm CMOS technology. The chip has a low power density of 0.52 mW/mm2, reducing 67.5% compared to related works, and achieves a high neuron density of 30.23 K/mm2. Eventually, the chip is demonstrated to be effective on different datasets and achieves 0.96 pJ/SOP energy efficiency.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com