Siracusa: A 16 nm Heterogenous RISC-V SoC for Extended Reality with At-MRAM Neural Engine (2312.14750v2)
Abstract: Extended reality (XR) applications are Machine Learning (ML)-intensive, featuring deep neural networks (DNNs) with millions of weights, tightly latency-bound (10-20 ms end-to-end), and power-constrained (low tens of mW average power). While ML performance and efficiency can be achieved by introducing neural engines within low-power systems-on-chip (SoCs), system-level power for nontrivial DNNs depends strongly on the energy of non-volatile memory (NVM) access for network weights. This work introduces Siracusa, a near-sensor heterogeneous SoC for next-generation XR devices manufactured in 16 nm CMOS. Siracusa couples an octa-core cluster of RISC-V digital signal processing cores with a novel tightly-coupled "At-Memory" integration between a state-of-the-art digital neural engine called N-EUREKA and an on-chip NVM based on magnetoresistive memory(MRAM), achieving 1.7x higher throughput and 3x better energy efficiency than XR SoCs using NVM as background memory. The fabricated SoC prototype achieves an area efficiency of 65.2 GOp/s/mm2 and a peak energy efficiency of 8.84 TOp/J for DNN inference while supporting complex heterogeneous application workloads, which combine ML with conventional signal processing and control.
- M. Abrash, “Creating the Future: Augmented Reality, the next Human-Machine Interface,” in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA: IEEE, Dec. 2021, pp. 1–11. [Online]. Available: https://ieeexplore.ieee.org/document/9720526/
- S. Han, B. Liu, R. Cabezas, C. D. Twigg, P. Zhang, J. Petkau, T.-H. Yu, C.-J. Tai, M. Akbay, Z. Wang, A. Nitzan, G. Dong, Y. Ye, L. Tao, C. Wan, and R. Wang, “MEgATrack: monochrome egocentric articulated hand-tracking for virtual reality,” ACM Transactions on Graphics, vol. 39, no. 4, Aug. 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/3386569.3392452
- Y. Feng, N. Goulding-Hotta, A. Khan, H. Reyserhove, and Y. Zhu, “Real-Time Gaze Tracking with Event-Driven Eye Segmentation,” in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Christchurch, New Zealand: IEEE, Mar. 2022, pp. 399–408. [Online]. Available: https://ieeexplore.ieee.org/document/9756796/
- F. Conti, G. Paulin, A. Garofalo, D. Rossi, A. D. Mauro, G. Rutishauser, G. Ottavi, M. Eggimann, H. Okuhara, and L. Benini, “Marsellus: A Heterogeneous RISC-V AI-IoT End-Node SoC With 2–8 b DNN Acceleration and 30%-Boost Adaptive Body Biasing,” IEEE Journal of Solid-State Circuits, pp. 1–15, 2023, conference Name: IEEE Journal of Solid-State Circuits. [Online]. Available: https://ieeexplore.ieee.org/document/10269153
- A. Di Mauro, M. Scherer, D. Rossi, and L. Benini, “Kraken: A Direct Event/Frame-Based Multi-sensor Fusion SoC for Ultra-Efficient Visual Processing in Nano-UAVs,” in 2022 IEEE Hot Chips 34 Symposium (HCS). Cupertino, CA, USA: IEEE, Aug. 2022, pp. 1–19. [Online]. Available: https://ieeexplore.ieee.org/document/9895621/
- I. Miro-Panades, B. Tain, J.-F. Christmann, D. Coriat, R. Lemaire, C. Jany, B. Martineau, F. Chaix, G. Waltener, E. Pluchart, J.-P. Noel, A. Makosiej, M. Montoya, S. Bacles-Min, D. Briand, J.-M. Philippe, Y. Thonnart, A. Valentian, F. Heitzmann, and F. Clermidy, “SamurAI: A Versatile IoT Node With Event-Driven Wake-Up and Embedded ML Acceleration,” IEEE Journal of Solid-State Circuits, vol. 58, no. 6, pp. 1782–1797, Jun. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9874917/
- L. Yang, R. M. Radway, Y.-H. Chen, T. F. Wu, H. Liu, E. Ansari, V. Chandra, S. Mitra, and E. Beigné, “Three-Dimensional Stacked Neural Network Accelerator Architectures for AR/VR Applications,” IEEE Micro, vol. 42, no. 6, pp. 116–124, Nov. 2022, conference Name: IEEE Micro. [Online]. Available: https://ieeexplore.ieee.org/document/9933882
- Q. Zhang, H. An, Z. Fan, Z. Wang, Z. Li, G. Wang, H.-S. Kim, D. Blaauw, and D. Sylvester, “A 22nm 3.5TOPS/W Flexible Micro-Robotic Vision SoC with 2MB eMRAM for Fully-on-Chip Intelligence,” in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Jun. 2022, pp. 72–73, iSSN: 2158-9682. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9830340
- Y.-C. Chiu, W.-S. Khwa, C.-Y. Li, F.-L. Hsieh, Y.-A. Chien, G.-Y. Lin, P.-J. Chen, T.-H. Pan, D.-Q. You, F.-Y. Chen, A. Lee, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D. Chih, T.-Y. Chang, and M.-F. Chang, “A 22nm 8Mb STT-MRAM Near-Memory-Computing Macro with 8b-Precision and 46.4-160.1TOPS/W for Edge-AI Devices,” in 2023 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2023, pp. 496–498. [Online]. Available: https://ieeexplore.ieee.org/document/10067563/
- P.-H. Lee, C.-F. Lee, Y.-C. Shih, H.-J. Lin, Y.-A. Chang, C.-H. Lu, Y.-L. Chen, C.-P. Lo, C.-C. Chen, C.-H. Kuo, T.-L. Chou, C.-Y. Wang, J. J. Wu, R. Wang, H. Chuang, Y. Wang, Y.-D. Chih, and T.-Y. J. Chang, “33.1 A 16nm 32Mb Embedded STT-MRAM with a 6ns Read-Access Time, a 1M-Cycle Write Endurance, 20-Year Retention at 150°C and MTJ-OTP Solutions for Magnetic Immunity,” in 2023 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2023, pp. 494–496. [Online]. Available: https://ieeexplore.ieee.org/document/10067837/
- M. Scherer, M. Eggimann, A. D. Mauro, A. S. Prasad, F. Conti, D. Rossi, J. T. Gómez, Z. Li, S. S. Sarwar, Z. Wang, B. D. Salvo, and L. Benini, “Siracusa: A Low-Power On-Sensor RISC-V SoC for Extended Reality Visual Processing in 16nm CMOS,” in ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC). Lisbon, Portugal: IEEE, Sep. 2023, pp. 217–220. [Online]. Available: https://ieeexplore.ieee.org/document/10268718/
- H. Murakami, E. Bohannon, J. Childs, G. Gui, E. Moule, K. Hanzawa, T. Koda, C. Takano, T. Shimizu, Y. Takizawa, A. Basavalingappa, R. Childs, C. Cziesler, R. Jarnot, K. Nishimura, S. Rogerson, and Y. Nitta, “A 4.9Mpixel Programmable-Resolution Multi-Purpose CMOS Image Sensor for Computer Vision,” in 2022 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2022, pp. 104–106. [Online]. Available: https://ieeexplore.ieee.org/document/9731607/
- F. Montagna, S. Mach, S. Benatti, A. Garofalo, G. Ottavi, L. Benini, D. Rossi, and G. Tagliavini, “A Low-Power Transprecision Floating-Point Cluster for Efficient Near-Sensor Data Analytics,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 5, pp. 1038–1053, May 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9506919/
- C. Jie, I. Loi, L. Benini, and D. Rossi, “Energy-Efficient Two-level Instruction Cache Design for an Ultra-Low-Power Multi-core Cluster,” in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). Grenoble, France: IEEE, Mar. 2020, pp. 1734–1739. [Online]. Available: https://ieeexplore.ieee.org/document/9116212/
- A. Prasad, L. Benini, and F. Conti, “Specialization meets Flexibility: a Heterogeneous Architecture for High-Efficiency, High-flexibility AR/VR Processing,” in Proceedings of the 2023 Design Automation Conference (DAC 2023), to appear, 2023.
- M. Rusci and T. Tuytelaars, “On-Device Customization of Tiny Deep Learning Models for Keyword Spotting With Few Examples,” IEEE Micro, vol. 43, no. 6, pp. 50–57, Nov. 2023, conference Name: IEEE Micro. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10241972
- F. Conti, “Technical Report: NEMO DNN Quantization for Deployment Model,” Apr. 2020, arXiv:2004.05930 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2004.05930
- S. Ikegawa, F. B. Mancoff, J. Janesky, and S. Aggarwal, “Magnetoresistive Random Access Memory: Present and Future,” IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1407–1419, Apr. 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8976130/
- Z. Guo, J. Yin, Y. Bai, D. Zhu, K. Shi, G. Wang, K. Cao, and W. Zhao, “Spintronics for Energy- Efficient Computing: An Overview and Outlook,” Proceedings of the IEEE, vol. 109, no. 8, pp. 1398–1417, Aug. 2021, conference Name: Proceedings of the IEEE. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9452065
- P. Houshmand, G. M. Sarda, V. Jain, K. Ueyoshi, I. A. Papistas, M. Shi, Q. Zheng, D. Bhattacharjee, A. Mallik, P. Debacker, D. Verkest, and M. Verhelst, “DIANA: An End-to-End Hybrid DIgital and ANAlog Neural Network SoC for the Edge,” IEEE Journal of Solid-State Circuits, vol. 58, no. 1, pp. 203–215, Jan. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9932871/
- S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-Based In-Memory Accelerator,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 5, pp. 1123–1136, May 2020, conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8675492
- W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-Memory Processing Paradigm for Bitwise Logic Operations in STT–MRAM,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1–4, Nov. 2017, conference Name: IEEE Transactions on Magnetics. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7927489
- D. Rossi, F. Conti, M. Eggiman, A. D. Mauro, G. Tagliavini, S. Mach, M. Guermandi, A. Pullini, I. Loi, J. Chen, E. Flamand, and L. Benini, “Vega: A Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up From MRAM-Based State-Retentive Sleep Mode,” IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp. 127–139, Jan. 2022, conference Name: IEEE Journal of Solid-State Circuits.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018. [Online]. Available: https://arxiv.org/abs/1801.04381
- M. Chang, S. D. Spetalnick, B. Crafton, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury, “A 40nm 60.64TOPS/W ECC-Capable Compute-in-Memory/Digital 2.25MB/768KB RRAM/SRAM System with Embedded Cortex M3 Microprocessor for Edge Recommendation Systems,” in 2022 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2022, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/9731679/
- T. Hoefler, D. Alistarh, T. Ben-Nun, and N. Dryden, “Sparsity in deep learning,” The Journal of Machine Learning Research, vol. 22, no. 1, pp. 1–124, Jan. 2021.
- J. Van Delm, M. Vandersteegen, A. Burrello, G. M. Sarda, F. Conti, D. J. Pagliari, L. Benini, and M. Verhelst, “HTVM: Efficient Neural Network Deployment On Heterogeneous TinyML Platforms,” in 2023 60th ACM/IEEE Design Automation Conference (DAC). San Francisco, CA, USA: IEEE, Jul. 2023, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/10247664/