Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A brief review of Reduced Order Models using intrusive and non-intrusive techniques (2406.00559v2)

Published 1 Jun 2024 in math.NA and cs.NA

Abstract: Reduced Order Models (ROMs) have gained a great attention by the scientific community in the last years thanks to their capabilities of significantly reducing the computational cost of the numerical simulations, which is a crucial objective in applications like real time control and shape optimization. This contribution aims to provide a brief overview about such a topic. We discuss both an intrusive framework based on a Galerkin projection technique and non-intrusive approaches, including Physics Informed Neural Networks (PINN), purely Data-Driven Neural Networks (DDNN), Radial Basis Functions (RBF), Dynamic Mode Decomposition (DMD) and Gaussian Process Regression (GPR). We also briefly mention geometrical parametrization and dimensionality reduction methods like Active Subspaces (AS). Then we present some results related to academic test cases as well as a preliminary investigation related to an industrial application.

Summary

We haven't generated a summary for this paper yet.