Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-intrusive reduced-order modeling using convolutional autoencoders (2204.08280v1)

Published 9 Apr 2022 in math.NA and cs.NA

Abstract: The use of reduced-order models (ROMs) in physics-based modeling and simulation almost always involves the use of linear reduced basis (RB) methods such as the proper orthogonal decomposition (POD). For some nonlinear problems, linear RB methods perform poorly, failing to provide an efficient subspace for the solution space. The use of nonlinear manifolds for ROMs has gained traction in recent years, showing increased performance for certain nonlinear problems over linear methods. Deep learning has been popular to this end through the use of autoencoders for providing a nonlinear trial manifold for the solution space. In this work, we present a non-intrusive ROM framework for steady-state parameterized partial differential equations (PDEs) that uses convolutional autoencoders (CAEs) to provide a nonlinear solution manifold and is augmented by Gaussian process regression (GPR) to approximate the expansion coefficients of the reduced model. When applied to a numerical example involving the steady incompressible Navier-Stokes equations solving a lid-driven cavity problem, it is shown that the proposed ROM offers greater performance in prediction of full-order states when compared to a popular method employing POD and GPR over a number of ROM dimensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rakesh Halder (5 papers)
  2. Krzysztof Fidkowski (3 papers)
  3. Kevin Maki (4 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.