Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at Logical Reasoning with LLMs: The Choice of Tool Matters (2406.00284v2)

Published 1 Jun 2024 in cs.CL

Abstract: The emergence of LLMs has demonstrated promising progress in solving logical reasoning tasks effectively. Several recent approaches have proposed to change the role of the LLM from the reasoner into a translator between natural language statements and symbolic representations which are then sent to external symbolic solvers to resolve. This paradigm has established the current state-of-the-art result in logical reasoning (i.e., deductive reasoning). However, it remains unclear whether the variance in performance of these approaches stems from the methodologies employed or the specific symbolic solvers utilized. There is a lack of consistent comparison between symbolic solvers and how they influence the overall reported performance. This is important, as each symbolic solver also has its own input symbolic language, presenting varying degrees of challenge in the translation process. To address this gap, we perform experiments on 3 deductive reasoning benchmarks with LLMs augmented with widely used symbolic solvers: Z3, Pyke, and Prover9. The tool-executable rates of symbolic translation generated by different LLMs exhibit a near 50% performance variation. This highlights a significant difference in performance rooted in very basic choices of tools. The almost linear correlation between the executable rate of translations and the accuracy of the outcomes from Prover9 highlight a strong alignment between LLMs ability to translate into Prover9 symbolic language, and the correctness of those translations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com