Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Adaptation with Cauchy-Schwarz Divergence (2405.19978v1)

Published 30 May 2024 in cs.LG and stat.ML

Abstract: Domain adaptation aims to use training data from one or multiple source domains to learn a hypothesis that can be generalized to a different, but related, target domain. As such, having a reliable measure for evaluating the discrepancy of both marginal and conditional distributions is crucial. We introduce Cauchy-Schwarz (CS) divergence to the problem of unsupervised domain adaptation (UDA). The CS divergence offers a theoretically tighter generalization error bound than the popular Kullback-Leibler divergence. This holds for the general case of supervised learning, including multi-class classification and regression. Furthermore, we illustrate that the CS divergence enables a simple estimator on the discrepancy of both marginal and conditional distributions between source and target domains in the representation space, without requiring any distributional assumptions. We provide multiple examples to illustrate how the CS divergence can be conveniently used in both distance metric- or adversarial training-based UDA frameworks, resulting in compelling performance.

Summary

We haven't generated a summary for this paper yet.