Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Domain Adaptation Based on the Predictive Uncertainty of Models (2211.08866v1)

Published 16 Nov 2022 in cs.CV

Abstract: Unsupervised domain adaptation (UDA) aims to improve the prediction performance in the target domain under distribution shifts from the source domain. The key principle of UDA is to minimize the divergence between the source and the target domains. To follow this principle, many methods employ a domain discriminator to match the feature distributions. Some recent methods evaluate the discrepancy between two predictions on target samples to detect those that deviate from the source distribution. However, their performance is limited because they either match the marginal distributions or measure the divergence conservatively. In this paper, we present a novel UDA method that learns domain-invariant features that minimize the domain divergence. We propose model uncertainty as a measure of the domain divergence. Our UDA method based on model uncertainty (MUDA) adopts a Bayesian framework and provides an efficient way to evaluate model uncertainty by means of Monte Carlo dropout sampling. Empirical results on image recognition tasks show that our method is superior to existing state-of-the-art methods. We also extend MUDA to multi-source domain adaptation problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Gyemin Lee (3 papers)
  2. Joonho Lee (104 papers)
Citations (10)