Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morse and Lusternik-Schnirelmann for graphs (2405.19603v1)

Published 30 May 2024 in math.CO and cs.DM

Abstract: Both Morse theory and Lusternik-Schnirelmann theory link algebra, topology and analysis in a geometric setting. The two theories can be formulated in finite geometries like graph theory or within finite abstract simplicial complexes. We work here mostly in graph theory and review the Morse inequalities b(k)-b(k-1) + ... + b(0) less of equal than c(k)-c(k-1) + ... + c(0) for the Betti numbers b(k) and the minimal number c(k) of Morse critical points of index k and the Lusternik-Schnirelmann inequalities cup+1 less or equal than cat less or equal than cri, between the algebraic cup length cup, the topological category cat and the analytic number cri counting the minimal number of critical points of a function.

Citations (1)

Summary

We haven't generated a summary for this paper yet.