Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Lusternik-Schnirelmann theorem for graphs (1211.0750v2)

Published 5 Nov 2012 in math.AT, cs.DM, and math.GN

Abstract: We prove the discrete Lusternik-Schnirelmann theorem telling that tcat(G) less or equal to crit(G) for a general simple graph G=(V,E). It relates the minimal number tcat(G) of in G contractible graphs covering G, with crit(G), the minimal number of critical points which an injective function f on the vertex set V can have. We also prove that the cup length cup(G) is less or equal to tcat(G) which is valid also for any finite simple graph. If cat(G) is the minimal tcat(H) among all graphs H homotopic to G and cri(G) is the minimal crit(H) among all graphs H homotopic to G, we get a relation between three homotopy invariants: an algebraic quantity (cup), a topological quantity (cat) and an analytic quantity (cri).

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com