2000 character limit reached
The Lusternik-Schnirelmann theorem for graphs (1211.0750v2)
Published 5 Nov 2012 in math.AT, cs.DM, and math.GN
Abstract: We prove the discrete Lusternik-Schnirelmann theorem telling that tcat(G) less or equal to crit(G) for a general simple graph G=(V,E). It relates the minimal number tcat(G) of in G contractible graphs covering G, with crit(G), the minimal number of critical points which an injective function f on the vertex set V can have. We also prove that the cup length cup(G) is less or equal to tcat(G) which is valid also for any finite simple graph. If cat(G) is the minimal tcat(H) among all graphs H homotopic to G and cri(G) is the minimal crit(H) among all graphs H homotopic to G, we get a relation between three homotopy invariants: an algebraic quantity (cup), a topological quantity (cat) and an analytic quantity (cri).