Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Torus knots, the A-polynomial, and SL(2,C) (2405.19197v1)

Published 29 May 2024 in math.GT

Abstract: The A-polynomial of a knot is defined in terms of SL(2,C) representations of the knot group, and encodes information about essential surfaces in the knot complement. In 2005, Dunfield-Garoufalidis and Boyer-Zhang proved that it detects the unknot using Kronheimer-Mrowka's work on the Property P conjecture. Here we use more recent results from instanton Floer homology to prove that a version of the A-polynomial distinguishes torus knots from all other knots, and in particular detects the torus knot T_{a,b} if and only if one of |a| or |b| is $2$ or both are prime powers. These results enable progress towards a folklore conjecture about boundary slopes of non-torus knots. Finally, we use similar ideas to prove that a knot in the 3-sphere admits infinitely many SL(2,C)-abelian Dehn surgeries if and only if it is a torus knot, affirming a variant of a conjecture due to Sivek-Zentner.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. I. Agol. Bounds on exceptional Dehn filling. Geom. Topol., 4:431–449, 2000.
  2. Small Dehn surgery and S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ). arXiv:2110.02874, 2021.
  3. J. A. Baldwin and S. Sivek. Stein fillings and SU(2) representations. Geom. Topol., 22(7):4307–4380, 2018.
  4. J. A. Baldwin and S. Sivek. Khovanov homology detects the trefoils. Duke Math. J., 171(4):885–956, 2022.
  5. J. A. Baldwin and S. Sivek. Instantons and L-space surgeries. J. Eur. Math. Soc. (JEMS), 25(10):4033–4122, 2023.
  6. S. Boyer and X. Zhang. On Culler-Shalen seminorms and Dehn filling. Ann. of Math. (2), 148(3):737–801, 1998.
  7. G. Burde and H. Zieschang. Knots, volume 5 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, second edition, 2003.
  8. S. Boyer and X. Zhang. Every nontrivial knot in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT has nontrivial A𝐴Aitalic_A-polynomial. Proc. Amer. Math. Soc., 133(9):2813–2815, 2005.
  9. Plane curves associated to character varieties of 3333-manifolds. Invent. Math., 118(1):47–84, 1994.
  10. Dehn surgery on knots. Ann. of Math. (2), 125(2):237–300, 1987.
  11. M. Culler and P. B. Shalen. Varieties of group representations and splittings of 3333-manifolds. Ann. of Math. (2), 117(1):109–146, 1983.
  12. M. Culler and P. B. Shalen. Bounded, separating, incompressible surfaces in knot manifolds. Invent. Math., 75(3):537–545, 1984.
  13. N. M. Dunfield and S. Garoufalidis. Non-triviality of the A𝐴Aitalic_A-polynomial for knots in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Algebr. Geom. Topol., 4:1145–1153, 2004.
  14. A. E. Hatcher. On the boundary curves of incompressible surfaces. Pacific J. Math., 99(2):373–377, 1982.
  15. When does a satellite knot fiber? Hiroshima Math. J., 38(3):411–423, 2008.
  16. Bordered Floer homology for manifolds with torus boundary via immersed curves. J. Amer. Math. Soc., 37(2):391–498, 2024.
  17. Problems in low-dimensional topology. In R. Kirby, editor, Geometric topology (Athens, GA, 1993), volume 2 of AMS/IP Stud. Adv. Math., pages 35–473. Amer. Math. Soc., Providence, RI, 1997.
  18. Dehn surgery, the fundamental group and SU(2)2(2)( 2 ). Math. Res. Lett., 11(5-6):741–754, 2004.
  19. Witten’s conjecture and property P. Geom. Topol., 8:295–310, 2004.
  20. P. Kronheimer and T. Mrowka. Instanton Floer homology and the Alexander polynomial. Algebr. Geom. Topol., 10(3):1715–1738, 2010.
  21. P. Kronheimer and T. Mrowka. Knots, sutures, and excision. J. Differential Geom., 84(2):301–364, 2010.
  22. Knot homology groups from instantons. J. Topol., 4(4):835–918, 2011.
  23. M. Lackenby. Word hyperbolic Dehn surgery. Invent. Math., 140(2):243–282, 2000.
  24. Y. Lim. Instanton homology and the Alexander polynomial. Proc. Amer. Math. Soc., 138(10):3759–3768, 2010.
  25. Toroidal integer homology three-spheres have irreducible S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 )-representations. J. Topol., 16(1):344–367, 2023.
  26. Z. Li and F. Ye. S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) representations and a large surgery formula. arXiv:2107.11005, 2021.
  27. J. Nielsen. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math., 50(1):189–358, 1927.
  28. Y. Ni and X. Zhang. Detection of knots and a cabling formula for A𝐴Aitalic_A-polynomials. Algebr. Geom. Topol., 17(1):65–109, 2017.
  29. S. Sivek and R. Zentner. S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 )-cyclic surgeries and the pillowcase. J. Differential Geom., 121(1):101–185, 2022.
  30. F. Waldhausen. On irreducible 3333-manifolds which are sufficiently large. Ann. of Math. (2), 87:56–88, 1968.
  31. R. Zentner. Integer homology 3-spheres admit irreducible representations in SL⁢(2,ℂ)SL2ℂ{\rm SL}(2,\mathbb{C})roman_SL ( 2 , blackboard_C ). Duke Math. J., 167(9):1643–1712, 2018.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 5 likes.