Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dedekind-MacNeille and related completions: subfitness, regularity, and Booleanness (2405.19171v3)

Published 29 May 2024 in math.GN

Abstract: Completions play an important r^ole for studying structure by supplying elements that in some sense ``ought to be." Among these, the Dedekind-MacNeille completion is of particular importance. In 1968 Janowitz provided necessary and sufficient conditions for it to be subfit or Boolean. Another natural separation axiom connected to these is regularity. We explore similar characterizations of when closely related completions are subfit, regular, or Boolean. We are mainly interested in the Bruns-Lakser, ideal, and canonical completions, which (unlike the Dedekind-MacNeille completion) satisfy stronger forms of distributivity. The first two are widely used in pointfree topology, while the latter is of crucial importance in the semantics of modal logic.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. B. Banaschewski. Universal zero-dimensional compactifications. World Scientific Publishing Co., pages 257–269, 1989.
  2. Bitopological duality for distributive lattices and Heyting algebras. Math. Struct. Comput. Sci., 20(3):359–393, 2010.
  3. A new proof of the Joyal-Tierney theorem. Cah. Topol. Géom. Différ. Catég., 64(4):425–438, 2023.
  4. R. Balbes and Ph. Dwinger. Distributive lattices. University of Missouri Press., 1974.
  5. Modal logic, volume 53 of Camb. Tracts Theor. Comput. Sci. Cambridge University Press, Cambridge, 2001.
  6. Semilattice base hierarchy for frames and its topological ramifications. Appl. Cat. Struct., to appear, 2024. arXiv:2308.01627.
  7. Spectra of compact regular frames. Theory Appl. Categ., 31:365–383, 2016.
  8. G. Bezhanishvili and J. Harding. MacNeille completions of Heyting algebras. Houston J. Math., 30(4):937–952, 2004.
  9. G. Bezhanishvili and J. Harding. Proximity frames and regularization. Appl. Categ. Structures, 22(1):43–78, 2014.
  10. Canonical extensions, free completely distributive lattices, and complete retracts. Algebra Univers., 82(4):6, 2021.
  11. G. Bruns and H. Lakser. Injective hulls of semilattices. Can. Math. Bull., 13(1):115–118, 1970.
  12. Subfitness in distributive (semi)lattices, 2024. arXiv:2404.06071.
  13. Lindelöf tightness and the Dedekind-MacNeille completion of a regular sigma-frame. Quaest. Math., 40(3):347–362, 2017.
  14. The Dedekind-MacNeille site completion of a meet-semilattice. Algebra Univers., 76(2):183–197, 2016.
  15. J. R. Büchi. Die Boolesche Partialordnung und die Paarung von Gefügen. Port. Math., 7:119–180, 1948.
  16. Conjunctive join-semilattices. Algebra Univers., 82(4):51, 2021.
  17. Introduction to lattices and order. Cambridge University Press, 2nd edition, 2002.
  18. Complete congruences on topologies and down-set lattices. Appl. Categ. Structures, 15(1):163–184, 2007.
  19. L. Esakia. Heyting algebras. Duality theory., volume 50 of Trends Log. Stud. Log. Libr. Springer, Cham, 2019. Translated from the Russian by A. Evseev.
  20. M. Gehrke and J. Harding. Bounded lattice expansions. J. Algebra, 238(1):345–371, 2001.
  21. M. Gehrke and B. Jónsson. Bounded distributive lattices with operators. Math. Japon., 40(2):207–215, 1994.
  22. R. Goldblatt. Varieties of complex algebras. Ann. Pure Appl. Logic, 44(3):173–242, 1989.
  23. G. Grätzer. Lattice theory: Foundation. Birkhäuser, Basel, 2011.
  24. A. Horn and N. Kimura. The category of semilattices. Algebra Univers., 1:26–38, 1971.
  25. M.F. Janowitz. Section semicomplemented lattices. Math. Z., 108:63–76, 1968.
  26. P.T. Johnstone. Stone spaces. Cambridge University Press, 1982.
  27. K. Kunen. Set theory, volume 34 of Stud. Log. College Publications, London, 2011.
  28. M. Mandelker. Relative annihilators in lattices. Duke Math. J., 37(2):377–386, 1970.
  29. R. S. Pierce. Homorphisms of semi-groups. Ann. of Math., 59(2):287, 1954.
  30. J. Picado and A. Pultr. Frames and locales: Topology without points. Frontiers in Mathematics. Springer, Basel, 2012.
  31. J. Picado and A. Pultr. Separation in point-free topology. Birkhäuser, Cham, 2021.
  32. H.A. Priestley. Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc., 2(2):186–190, 1970.
  33. H.A. Priestley. Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. (3), 24:507–530, 1972.
  34. H.A. Priestley. Ordered sets and duality for distributive lattices. Ann. Discrete Math., 23:39–60, 1984.
  35. H. Simmons. The lattice theoretic part of topological separation properties. Proc. Edin. Math. Soc., 21(1):41–48, 1978.
  36. L. Skula. On a reflective subcategory of the category of all topological spaces. Trans. Amer. Math. Soc., 142:37–41, 1969.
  37. H. Wallman. Lattices and topological spaces. Ann.of Math., 39(1):112–126, 1938.
  38. J.L. Walters. Uniform sigma-frames and the cozero part of uniform frames. Master’s thesis, University Of Cape Town, 1989. http://hdl.handle.net/11427/18467.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.