Quantum Circuit Switching with One-Way Repeaters in Star Networks (2405.19049v2)
Abstract: Distributing quantum states reliably among distant locations is a key challenge in the field of quantum networks. One-way quantum networks address this by using one-way communication and quantum error correction. Here, we analyze quantum circuit switching as a protocol to distribute quantum states in one-way quantum networks. In quantum circuit switching, pairs of users can request the delivery of multiple quantum states from one user to the other. After waiting for approval from the network, the states can be distributed either sequentially, forwarding one at a time along a path of quantum repeaters, or in parallel, sending batches of quantum states from repeater to repeater. Since repeaters can only forward a finite number of quantum states at a time, a pivotal question arises: is it advantageous to send them sequentially (allowing for multiple requests simultaneously) or in parallel (reducing processing time but handling only one request at a time)? We compare both approaches in a quantum network with a star topology. Using tools from queuing theory, we show that requests are met at a higher rate when packets are distributed in parallel, although sequential distribution can generally provide service to a larger number of users simultaneously. We also show that using a large number of quantum repeaters to combat channel losses limits the maximum distance between users, as each repeater introduces additional processing delays. These findings provide insight into the design of protocols for distributing quantum states in one-way quantum networks.
- M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, no. 7, 2021.
- W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum repeaters,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, pp. 78–90, 2015.
- S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
- S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, no. 6, p. 060310, 2005.
- H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress et al., “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90, 2013.
- M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys. Rev. Lett., vol. 71, no. 26, p. 4287, 1993.
- L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, no. 6862, pp. 413–418, 2001.
- N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys., vol. 83, no. 1, p. 33, 2011.
- W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nature Photon., vol. 6, no. 11, pp. 777–781, 2012.
- S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett., vol. 112, no. 25, p. 250501, 2014.
- J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl, and A. S. Sørensen, “One-way quantum repeater based on near-deterministic photon-emitter interfaces,” Phys. Rev. X, vol. 10, no. 2, p. 021071, 2020.
- S. DiAdamo, B. Qi, G. Miller, R. Kompella, and A. Shabani, “Packet switching in quantum networks: A path to the quantum internet,” Phys. Rev. Res., vol. 4, no. 4, p. 043064, 2022.
- P. Baran, “On distributed communications networks,” IEEE Trans. on Commun. Syst., vol. 12, no. 1, pp. 1–9, 1964.
- G. Broomell and J. R. Heath, “Classification categories and historical development of circuit switching topologies,” ACM Comput. Surv. (CSUR), vol. 15, no. 2, pp. 95–133, 1983.
- L. Aparicio and R. Van Meter, “Multiplexing schemes for quantum repeater networks,” in Quantum Commun. and Quantum Imag. IX, vol. 8163. International Society for Optics and Photonics, 2011, p. 816308.
- D. Leichtle, L. Music, E. Kashefi, and H. Ollivier, “Verifying bqp computations on noisy devices with minimal overhead,” PRX Quantum, vol. 2, no. 4, p. 040302, 2021.
- B. Davies, T. Beauchamp, G. Vardoyan, and S. Wehner, “Tools for the analysis of quantum protocols requiring state generation within a time window,” arXiv preprint arXiv:2304.12673, 2023.
- G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the capacity region of bipartite and tripartite entanglement switching,” ACM SIGMETRICS Perform. Eval. Rev., vol. 48, no. 3, pp. 45–50, 2021.
- ——, “On the stochastic analysis of a quantum entanglement distribution switch,” IEEE Trans. Quantum Eng., vol. 2, pp. 1–16, 2021.
- S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Scientific Rep., vol. 6, no. 1, pp. 1–10, 2016.
- C. Crépeau, D. Gottesman, and A. Smith, “Secure multi-party quantum computation,” in Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, 2002, pp. 643–652.
- V. Lipinska, G. Murta, J. Ribeiro, and S. Wehner, “Verifiable hybrid secret sharing with few qubits,” Phys. Rev. A, vol. 101, no. 3, p. 032332, 2020.
- M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Inf., vol. 5, no. 1, p. 25, 2019.
- S. Khatri, “On the design and analysis of near-term quantum network protocols using markov decision processes,” AVS Quantum Sci., vol. 4, no. 3, 2022.
- G. Avis, F. Rozpedek, and S. Wehner, “Analysis of multipartite entanglement distribution using a central quantum-network node,” Phys. Rev. A, vol. 107, no. 1, p. 012609, 2023.
- Á. G. Iñesta, G. Vardoyan, L. Scavuzzo, and S. Wehner, “Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs,” npj Quantum Inf., vol. 9, no. 1, p. 46, 2023.
- O. Collins, S. Jenkins, A. Kuzmich, and T. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett., vol. 98, no. 6, p. 060502, 2007.
- D. Niu, Y. Zhang, A. Shabani, and H. Shapourian, “All-photonic one-way quantum repeaters with measurement-based error correction,” npj Quantum Inf., vol. 9, no. 1, p. 106, 2023.
- P. Panteleev and G. Kalachev, “Degenerate quantum ldpc codes with good finite length performance,” Quantum, vol. 5, p. 585, 2021.
- V. Gupta, M. Harchol-Balter, J. G. Dai, and B. Zwart, “On the inapproximability of m/g/k: why two moments of job size distribution are not enough,” Queueing Syst., vol. 64, pp. 5–48, 2010.
- A. Lee and P. Longton, “Queueing processes associated with airline passenger check-in,” J. Oper. Res. Soc., vol. 10, no. 1, pp. 56–71, 1959.
- W. Whitt, “Approximations for the GI/G/m queue,” Prod. and Oper. Manage., vol. 2, no. 2, pp. 114–161, 1993.
- R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum error correcting code,” Physical Review Letters, vol. 77, no. 1, p. 198, 1996.
- N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017.
- M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys, R. N. Schouten, R. F. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse et al., “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021.
- A. Rohatgi, “Webplotdigitizer: Version 4.6,” 2022. [Online]. Available: https://automeris.io/WebPlotDigitizer