Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Engineering Challenges in All-photonic Quantum Repeaters (2405.09876v1)

Published 16 May 2024 in quant-ph and cs.NI

Abstract: Quantum networking, heralded as the next frontier in communication networks, envisions a realm where quantum computers and devices collaborate to unlock capabilities beyond what is possible with the Internet. A critical component for realizing a long-distance quantum network, and ultimately, the Quantum Internet, is the quantum repeater. As with the race to build a scalable quantum computer with different technologies, various schemes exist for building quantum repeaters. This article offers a gentle introduction to the two-way ``all-photonic quantum repeaters,'' a recent addition to quantum repeater technologies. In contrast to conventional approaches, these repeaters eliminate the need for quantum memories, offering the dual benefits of higher repetition rates and intrinsic tolerance to both quantum operational errors and photon losses. Using visualization and simple rules for manipulating graph states, we describe how all-photonic quantum repeaters work. We discuss the problem of the increased volume of classical communication required by this scheme, which places a huge processing requirement on the end nodes. We address this problem by presenting a solution that decreases the amount of classical communication by three orders of magnitude. We conclude by highlighting other key open challenges in translating the theoretical all-photonic framework into real-world implementation, providing insights into the practical considerations and future research directions of all-photonic quantum repeater technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, Oct. 2018. doi:10.1126/science.aam9288
  2. W. Kozlowski et al., “Architectural Principles for a Quantum Internet,” RFC 9340, Mar. 2023. doi:10.17487/RFC9340
  3. R. Van Meter et al., “A Quantum Internet Architecture,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).   Broomfield, CO, USA: IEEE, Sep. 2022, pp. 341–352. doi:10.1109/QCE53715.2022.00055
  4. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Physical Review Letters, vol. 81, no. 26, pp. 5932–5935, Dec. 1998. doi:10.1103/PhysRevLett.81.5932
  5. K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nature Communications, vol. 6, no. 1, p. 6787, Apr. 2015. doi:10.1038/ncomms7787
  6. Y. Hasegawa et al., “Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters,” Nature Communications, vol. 10, no. 1, p. 378, Jan. 2019. doi:10.1038/s41467-018-08099-5
  7. Z.-D. Li et al., “Experimental quantum repeater without quantum memory,” Nature Photonics, vol. 13, no. 9, pp. 644–648, Sep. 2019. doi:10.1038/s41566-019-0468-5
  8. K. Azuma et al., “Quantum repeaters: From quantum networks to the quantum internet,” Reviews of Modern Physics, vol. 95, no. 4, p. 045006, Dec. 2023. doi:10.1103/RevModPhys.95.045006
  9. L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Physical Review A, vol. 79, no. 3, p. 032325, Mar. 2009. doi:10.1103/PhysRevA.79.032325
  10. J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl, and A. S. Sørensen, “One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces,” Physical Review X, vol. 10, no. 2, p. 021071, Jun. 2020. doi:10.1103/PhysRevX.10.021071
  11. M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,” Physical Review A, vol. 69, no. 6, p. 062311, Jun. 2004. doi:10.1103/PhysRevA.69.062311
  12. P. Hilaire, E. Barnes, and S. E. Economou, “Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits,” Quantum, vol. 5, p. 397, Feb. 2021. doi:10.22331/q-2021-02-15-397
  13. D. Buterakos, E. Barnes, and S. E. Economou, “Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters,” Physical Review X, vol. 7, no. 4, p. 041023, Oct. 2017. doi:10.1103/PhysRevX.7.041023
  14. N. Benchasattabuse, M. Hajdušek, and R. Van Meter, “Architecture and protocols for all-photonic quantum repeaters,” 2023. doi:10.48550/arXiv.2306.03748
  15. Y. Meng et al., “Photonic fusion of entangled resource states from a quantum emitter,” Dec. 2023. doi:10.48550/arXiv.2312.09070
Citations (1)

Summary

We haven't generated a summary for this paper yet.