Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Posteriori Single- and Multi-Goal Error Control and Adaptivity for Partial Differential Equations (2404.01738v3)

Published 2 Apr 2024 in math.NA and cs.NA

Abstract: This work reviews goal-oriented a posteriori error control, adaptivity and solver control for finite element approximations to boundary and initial-boundary value problems for stationary and non-stationary partial differential equations, respectively. In particular, coupled field problems with different physics may require simultaneously the accurate evaluation of several quantities of interest, which is achieved with multi-goal oriented error control. Sensitivity measures are obtained by solving an adjoint problem. Error localization is achieved with the help of a partition-of-unity. We also review and extend theoretical results for efficiency and reliability by employing a saturation assumption. The resulting adaptive algorithms allow to balance discretization and non-linear iteration errors, and are demonstrated for four applications: Poisson's problem, non-linear elliptic boundary value problems, stationary incompressible Navier-Stokes equations, and regularized parabolic $p$-Laplace initial-boundary value problems. Therein, different finite element discretizations in two different software libraries are utilized, which are partially accompanied with open-source implementations on GitHub.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (232)
  1. Some remarks about the hierarchical a posteriori error estimate. Numer. Methods Partia. Diff. Equ., 20(6):919–932, 2004.
  2. A. Agouzal. On the saturation assumption and hierarchical a posteriori error estimator. Comput. Methods Appl. Math., 2(2):125–131, 2002.
  3. Multigoal-oriented error estimation and mesh adaptivity for fluid–structure interaction. J. Comput. Appl. Math., 412:114315, 2022.
  4. M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Pure and Applied Mathematics. John Wiley & Sons, New York, 2000.
  5. M. Ainsworth and R. Rankin. Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Methods Eng., 89(13):1605–1634, 2012.
  6. The deal.II library, version 9.0. J. Numer. Math., 26(4):173–183, 2018.
  7. MFEM: A modular finite element methods library. Comput. Math. Appl., 81:42–74, 2021.
  8. T. Apel and S. Nicaise. The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci., 21(6):519–549, 1998.
  9. The deal.II library, version 9.5. J. Numer. Math., 31(3):231–246, 2023.
  10. The deal.II finite element library: Design, features, and insights. Comput. Math. Appl., 81:407–422, 2021.
  11. Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput., 22(2):431–448, 2000.
  12. I. Babuška and J. M. Melenk. The partition of unity method. Int. J. Numer. Methods Eng., 40(4):727–758, 1997.
  13. I. Babuška and W. Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal., 15(4):736–754, 1978.
  14. I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng., 12(10):1597–1615, 1978.
  15. I. Babuška and T. Strouboulis. The Finite Element Method and Its Reliability. Oxford University Press, 2001.
  16. Adaptive Galerkin finite element methods for the wave equation. Comput. Methods Appl. Math., 10:3–48, 2010.
  17. deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1–24/27, 2007.
  18. W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Boston, 2003.
  19. Saturation estimates for h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Comput. Vis. Sci., 16(5):195–217, 2013.
  20. A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal., 30(4):921–935, 1993.
  21. R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44(170):283–301, 1985.
  22. Flexible goal-oriented adaptivity for higher-order space–time discretizations of transport problems with coupled flow. Comput. Math. Appl., 91:17–35, 2021.
  23. Computational Fluid-Structure Interaction: Methods and Applications. Wiley, 2013.
  24. R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo, 38(4):173–199, 2001.
  25. Adaptive finite element methods for PDE-constrained optimal control problems. In Reactive flows, diffusion and transport, pages 177–205. Springer, Berlin, 2007.
  26. On error control for reactive flow problems. In Scientific Computing in Chemical Engineering II, Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties, volume 1, pages 320–327. Springer Berlin, 1999.
  27. Rate-optimal goal-oriented adaptive fem for semilinear elliptic pdes. Comput. Math. Appl., 118:18–35, 2022.
  28. Weighted marking for goal-oriented adaptive finite element methods. SIAM J. Numer. Anal., 49(6):2451–2469, 2011.
  29. Goal-oriented adaptive finite element methods with optimal computational complexity. Numer. Math., 153(1):111–140, 2023.
  30. An optimal control approach to adaptivity in computational fluid mechanics. Int. J. Numer. Methods Fluids, 40(1-2):105–120, 2002.
  31. Optimal convergence rates for goal-oriented FEM with quadratic goal functional. Comput. Methods Appl. Math., 21(2):267–288, 2021.
  32. Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM J. Optim. Control, 39:113–132, 2000.
  33. R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996.
  34. R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In Lecture ENUMATH-95, Paris, Sept. 18-22, 1995, in: Proc. ENUMATH-97, Heidelberg, Sept. 28 - Oct.3, 1997 (H.G. Bock, et al., eds). pp. 621–637, World Sci. Publ., Singapore, 1998.
  35. R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer., 10:1–102, 2001.
  36. Mathematical analysis of variational isogeometric methods. Acta Numer., 23:157–287, 2014.
  37. M. Besier. Adaptive Finite Element methods for computing nonstationary incompressible Flows. PhD thesis, University of Heidelberg, 2009.
  38. M. Besier and R. Rannacher. Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow. Int. J. Num. Meth. Fluids, 70:1139–1166, 2012.
  39. Goal-oriented error estimation and adaptivity for elliptic pdes with parametric or uncertain inputs. Comput. Methods Appl. Mech. Eng., 345:951–982, 2019.
  40. Mathematical modeling and numerical multigoal-oriented a posteriori error control and adaptivity for a stationary, nonlinear, coupled flow temperature model with temperature dependent density, 2024. submitted.
  41. Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model. Comptes Rendus. Mécanique, Special Issue in Honor of Roland Glowinski, 2023. Online first.
  42. Goal oriented error control for stationary incompressible flow coupled to a heat equation. Proc. Appl. Math. Mech., 21(1):e202100151, 2021.
  43. Adaptive finite element methods with convergence rates. Numer. Math., 97(2):219–268, 2004.
  44. A posteriori estimates for fe-solutions of variational inequalities. In Numerical Mathematics and Advanced Applications, pages 669–680. Springer, 2003.
  45. H. Blum and F.-T. Suttmeier. An adaptive finite element discretisation for a simplified signorini problem. Calcolo, 37(2):65–77, 1999.
  46. H. Blum and F.-T. Suttmeier. Weighted error estimates for finite element solutions of variational inequalities. Computing, 65(2):119–134, 2000.
  47. A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal., 33(3):1188–1204, 1996.
  48. M. Braack and A. Ern. A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul., 1(2):221–238, 2003.
  49. M. Braack and T. Richter. Mesh and model adaptivity for flow problems. In W. Jäger, R. Rannacher, and J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 47–75. Springer Berlin Heidelberg, 2006.
  50. M. Braack and T. Richter. Solutions of 3D Navier–Stokes benchmark problems with adaptive finite elements. Comput. Fluids, 35:372–392, 05 2006.
  51. D. Braess. Finite Elemente; Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer-Verlag Berlin Heidelberg, 4., überarbeitete und erweiterte Auflage edition, 2007.
  52. Equilibrated residual error estimates are p𝑝pitalic_p-robust. Comput. Methods Appl. Mech. Eng., 198(13-14):1189–1197, 2009.
  53. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp., 31:333–390, 1977.
  54. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
  55. A machine-learning minimal-residual (ml-mres) framework for goal-oriented finite element discretizations. Comput. Math. Appl., 95:186–199, 2021. Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods.
  56. M. P. Bruchhäuser. Goal-oriented space-time adaptivity for a multirate approach to coupled flow and transport. PhD thesis, Helmut Schmidt University Hamburg, 2022.
  57. M. P. Bruchhäuser and M. Bause. A cost-efficient space-time adaptive algorithm for coupled flow and transport. Comput. Methods Appl. Math., 23(4):849–875, 2023.
  58. Numerical study of goal-oriented error control for stabilized finite element methods. In Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, pages 85–106. Springer International Publishing, 2019.
  59. Enhancing biomechanical simulations based on a posteriori error estimates: The potential of dual weighted residual-driven adaptive mesh refinement, 2024.
  60. Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project. Comput. Math. Appl., 131:103–123, 2023.
  61. Finite Elements. Volume III. Compuational Aspects. The Texas Finite Element Series, Prentice-Hall, Inc., Englewood Cliffs, 1984.
  62. Axioms of adaptivity. Comput. Math. Appl., 67(6):1195–1253, 2014.
  63. Justification of the saturation assumption. Numer. Math., 134(1):1–25, 2016.
  64. C. Carstensen and R. Verfürth. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal., 36(5):1571–1587, 1999.
  65. L. Chamoin and F. Legoll. Goal-oriented error estimation and adaptivity in MsFEM computations. Comput. Mech., 67(4):1201–1228, 2021.
  66. L. Chamoin and F. Legoll. An introductory review on a posteriori error estimation in finite element computations. SIAM Review, 65(4):963–1028, 2023.
  67. G. Chavent and J. Jaffré. Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, volume 17. Elsevier, 1986.
  68. Q. Chen and M. Gunzburger. Goal-oriented a posteriori error estimation for finite volume methods. J. Comput. Appl. Math., 265:69–82, 2014.
  69. Goal-oriented adaptivity for gmsfem. J. Comput. Appl. Math., 296:625–637, 2016.
  70. P. G. Ciarlet. Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
  71. B. Cockburn and S. Xia. An adjoint-based super-convergent galerkin approximation of eigenvalues. J. Comput. Phys., 449:110816, 2022.
  72. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Chichester, England, 2009.
  73. O. Coussy. Poromechanics. Wiley, 2004.
  74. Goal-oriented error estimation based on equilibrated flux and potential reconstruction for the approximation of elliptic and parabolic problems. Comput. Math. Appl., 146:323–338, 2023.
  75. Conforming and nonconforming finite element methods for solving the stationary stokes equations i. R.A.I.R.O., 7(R3):33–75, 1973.
  76. T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196–199, June 2004.
  77. A. De Rossi. Saturation assumption and finite element method for a one-dimensional model. RGMIA Research Report Collection, 5(2):Article 13, 1–6, 2002.
  78. P. Deuflhard. Newton Methods for Nonlinear Problems, volume 35 of Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2011.
  79. D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2012.
  80. P. Di Stolfo and A. Schröder. Error Control and Adaptivity for the Finite Cell Method, pages 377–403. Springer International Publishing, Cham, 2022.
  81. Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors. Comput. Math. Appl., 93:178–198, 2021.
  82. V. Dolejší and S. Congreve. Goal-oriented error analysis of iterative galerkin discretizations for nonlinear problems including linearization and algebraic errors. J. Comput. Appl. Math., 427:115134, 2023.
  83. A variational approach for temporal multiscale problems and its application to adaptivity and optimization. Proc. Appl. Math. Mech., 2023.
  84. W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 33(3):1106–1124, 1996.
  85. W. Dörfler and R. H. Nochetto. Small data oscillation implies the saturation assumption. Numer. Math., 91(1):1–12, 2002.
  86. T. Dunne. An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaption. Int. J. Numer. Methods Fluids, 51:1017–1039, 2006.
  87. T. Dunne. Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations. PhD thesis, University of Heidelberg, 2007.
  88. Numerical simulation of fluid-structure interaction based on monolithic variational formulations, pages 1–75. Comtemporary Challenges in Mathematical Fluid Mechanics. Springer, World Scientific, Singapore, 2010.
  89. Quantifying discretization errors for soft tissue simulation in computer assisted surgery: A preliminary study. Appl. Math. Model., 77:709–723, 2020.
  90. W. E and B. Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat., 6(1):1–12, 2 2018.
  91. B. Endtmayer. Multi-goal oriented a posteriori error estimates for nonlinear partial differential equations. PhD thesis, Johannes Kelper University Linz, 2020.
  92. Adaptive finite element simulations of laser-heated material flow using a boussinesq model. Proc. Appl. Math. Mech., 23(1):e202200219, 2023.
  93. Mesh adaptivity and error estimates applied to a regularized p𝑝pitalic_p-Laplacian constrainted optimal control problem for multiple quantities of interest. Proc. Appl. Math. Mech., 19(1):e201900231, 2019.
  94. Multigoal-oriented optimal control problems with nonlinear PDE constraints. Comput. Math. Appl., 79(10):3001–3026, 2020.
  95. Goal-oriented adaptive space-time finite element methods for regularized parabolic p𝑝pitalic_p-Laplace problems. arXiv preprint arXiv:2306.07167, 2023.
  96. Hierarchical DWR error estimates for the Navier-Stokes equations: hℎhitalic_h and p𝑝pitalic_p enrichment. In Numerical Mathematics and Advanced Applications ENUMATH 2019, pages 363–372. Springer, 2021.
  97. Multiple goal-oriented error estimates applied to 3d non-linear problems. Proc. Appl. Math. Mech., 18(1):e201800048, 2018.
  98. Multigoal-oriented error estimates for non-linear problems. J. Numer. Math., 27(4):215–236, 2019.
  99. Two-Side a Posteriori Error Estimates for the Dual-Weighted Residual Method. SIAM J. Sci. Comput., 42(1):A371–A394, 2020.
  100. Reliability and efficiency of DWR-type a posteriori error estimates with smart sensitivity weight recovering. Comput. Methods Appl. Math., 21(2):351–371, 2021.
  101. B. Endtmayer and A. Schafelner. Goal oriented adaptive space time finite element methods applied to touching domains. arXiv preprint arXiv:2401.17237, 2024.
  102. B. Endtmayer and T. Wick. A Partition-of-Unity Dual-Weighted Residual Approach for Multi-Objective Goal Functional Error Estimation Applied to Elliptic Problems. Comput. Methods Appl. Math., 17(4):575–599, 2017.
  103. Optimal convergence behavior of adaptive fem driven by simple (h- h/ 2)-type error estimators. Comput. Math. Appl., 79(3):623–642, 2020.
  104. Introduction to adaptive methods for differential equations. In Acta numerica, 1995, Acta Numer., pages 105–158. Cambridge Univ. Press, Cambridge, 1995.
  105. Computational Differential Equations. Cambridge University Press, 2009. http://www.csc.kth.se/ jjan/private/cde.pdf.
  106. A. Ern and J.-L. Guermond. Finite Elements I-III. Springer, 2021.
  107. A. Faghri and Y. Zhang. Fundamentals of Multiphase Heat Transfer and Flow. Springer Cham, 2020.
  108. L. Failer and T. Wick. Adaptive time-step control for nonlinear fluid-structure interaction. J. Comp. Phys., 366:448 – 477, 2018.
  109. An abstract analysis of optimal goal-oriented adaptivity. SIAM J. Numer. Anal., 54(3):1423–1448, 2016.
  110. Convergence of simple adaptive Galerkin schemes based on h−h/2ℎℎ2h-h/2italic_h - italic_h / 2 error estimators. Numer. Math., 116(2):291–316, 2010.
  111. On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction. Comput. Methods Appl. Mech. Eng., 199(49-52):3369–3385, 2010.
  112. Adaptive space-time model order reduction with dual-weighted residual (MORe DWR) error control for poroelasticity, 2024. accepted for publication in journal for advanced modeling and simulations in engineering sciences.
  113. MORe DWR: Space-time goal-oriented error control for incremental POD-based ROM for time-averaged goal functionals. J. Comput. Phys., 504:112863, 2024.
  114. G. Galdi and R. Rannacher. Fundamental Trends in Fluid-Structure Interaction. World Scientific, 2010.
  115. M. Giles and N. A. Pierce. Analysis of adjoint error correction for superconvergent functional estimates, 2001. Oxford University Computing Laboratory Report NA 01/14.
  116. M. B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer., 11:145–236, 2002.
  117. The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation. J. Comput. Finance, 18(4):1–37, 2015.
  118. DOpElib: Differential equations and optimization environment; A goal oriented software library for solving pdes and optimization problems with pdes. Archive of Numerical Software, 5(2):1–14, 2017.
  119. Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals. Appl. Numer. Math., 54:504–518, 2005.
  120. Adjoint-based error estimation and mesh adaptation for stabilized finite deformation elasticity. Comp. Meth. Appl. Mech. Engrg., 337:263–280, 2018.
  121. Linearization errors in discrete goal-oriented error estimation. Comput. Methods Appl. Mech. Eng., 416:116364, 2023.
  122. T. Grätsch and K.-J. Bathe. Goal-oriented error estimation in the analysis of fluid flows with structural interactions. Comp. Methods Appl. Mech. Engrg., 195:5673–5684, 2006.
  123. W. Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg, 1985.
  124. W. Han. A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations. Springer, Berlin, 2004.
  125. R. Hartmann. Multitarget error estimation and adaptivity in aerodynamic flow simulations. SIAM J. Sci. Comput., 31(1):708–731, 2008.
  126. R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for multiple target functionals. In Hyperbolic problems: theory, numerics, applications, pages 579–588. Springer, Berlin, 2003.
  127. B. Heise. Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal., 31(3):745–759, 1994.
  128. V. Heuveline and R. Rannacher. A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math., 15(1):107–138, 2001.
  129. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fl., 22(5):325–352, 1996.
  130. A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard-Navier-Stokes system. Optim. Eng., 19(3):629–662, 2018.
  131. M. Hintermüller and R. H. W. Hoppe. Goal-Oriented Adaptivity in Control Constrained Optimal Control of Partial Differential Equations. SIAM J. Control Opt., 47(4):1721–1743, 2008.
  132. M. Hintermüller and R. H. W. Hoppe. Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Opt., 48(8):5468–5487, 2010.
  133. M. Holst and S. Pollock. Convergence of goal-oriented adaptive finite element methods for nonsymmetric problems. Numer. Methods Partia. Diff. Equ., 32(2):479–509, 2016.
  134. Convergence of goal-oriented adaptive finite element methods for semilinear problems. Comput. Vis. Sci., 17(1):43–63, 2015.
  135. T. Hughes. The finite element method. Dover Publications, 2000.
  136. T. Hughes and G. Hulbert. Space-time finite element methods for elastodynamics: Formulations and error estimates. Comp. Methods Appl. Mech. Engrg., 66:339–363, 1988.
  137. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng., 194:4135–4195, 2005.
  138. P. Ingelström and A. Bondeson. Goal-oriented error estimation and h-adaptivity for maxwell’s equations. Comput. Methods Appl. Mech. Eng., 192(22):2597–2616, 2003.
  139. C. Johnson. Numerical solution of partial differential equations by the finite element method. Dover Publications, Inc., Mineola, NY, 2009. Reprint of the 1987 edition.
  140. On a goal-oriented version of the proper generalized decomposition method. J. Sci. Comput., 81(1):92–111, 2019.
  141. A new goal-oriented formulation of the finite element method. Comput. Methods Appl. Mech. Eng., 327:256–276, 2017.
  142. An introduction to metric spaces and fixed point theory. Pure and Applied Mathematics (New York). Wiley-Interscience, New York, 2001.
  143. H. Kim and S.-G. Kim. Saturation assumptions for a 1d convection-diffusion model. Korean J. Math., 22(4):599–609, 2014.
  144. Efficient and scalable data structures and algorithms for goal-oriented adaptivity of space–time FEM codes. SoftwareX, 10:100239, 2019.
  145. D. Kuzmin and S. Korotov. Goal-oriented a posteriori error estimates for transport problems. Math. Comput. Simulation, 80(8):1674–1683, 2010.
  146. New bounding techniques for goal-oriented error estimation applied to linear problems. Int. J. Numer. Methods Eng., 93(13):1345–1380, 2013.
  147. U. Langer and O. Steinbach, editors. Space-time methods: Application to Partial Differential Equations. volume 25 of Radon Series on Computational and Applied Mathematics, Berlin. de Gruyter, 2019.
  148. Space-time methods for time-dependent partial differential equations. Oberwolfach reports, 6(1):1–80, 2022.
  149. L. Lautsch and T. Richter. Error estimation and adaptivity for differential equations with multiple scales in time. Comput. Methods Appl. Math., 2021.
  150. R. W. Lewis and B. Schrefler. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd Edition. Wiley, 1999.
  151. M. Maier and R. Rannacher. Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems. J. Numer. Math., 24(3):167–187, 2016.
  152. M. Maier and R. Rannacher. A duality-based optimization approach for model adaptivity in heterogeneous multiscale problems. Multiscale Model. Simul., 16(1):412–428, 2018.
  153. Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers. J. Comput. Appl. Math., 366:112367, 2020.
  154. C. Mehlmann and T. Richter. A goal oriented error estimator and mesh adaptivity for sea ice simulations. Ocean Model., 154:101684, 2020.
  155. D. Meidner. Adaptive Space-Time Finite Element Methods for Optimization Problems Governed by Nonlinear Parabolic Systems. PhD thesis, University of Heidelberg, 2008.
  156. Goal-oriented error control of the iterative solution of finite element equations. J. Numer. Math., 17(2):143–172, 2009.
  157. D. Meidner and T. Richter. Goal-oriented error estimation for the fractional step theta scheme. Comput. Methods Appl. Math., 14(2):203–230, 2014.
  158. D. Meidner and T. Richter. A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Engrg., 288:45–59, 2015.
  159. D. Meidner and B. Vexler. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim., 46(1):116–142, 2007.
  160. J. M. Melenk and I. Babuška. The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng., 139(1-4):289–314, 1996.
  161. M. Meyer and H. G. Matthies. Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods. Comput. Mech., 31(1):179–191, May 2003.
  162. MFEM: Modular finite element methods [Software]. mfem.org.
  163. P. Minakowski and T. Richter. Finite element error estimates on geometrically perturbed domains. J. Sci. Comput., 84(30), 2020.
  164. P. Minakowski and T. Richter. A priori and a posteriori error estimates for the deep Ritz method applied to the Laplace and Stokes problem. J. Comput. Appl. Math., 421:114845, 2023.
  165. M. S. Mommer and R. Stevenson. A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal., 47(2):861–886, 2009.
  166. Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal., 38(2):466–488, 2000.
  167. I. Mozolevski and S. Prudhomme. Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Comput. Methods Appl. Mech. Eng., 288:127–145, 2015.
  168. G. Nabh. On high order methods for the stationary incompressible Navier-Stokes equations. PhD thesis, Interdisziplinäres Zentrum für Wiss. Rechnen der Univ. Heidelberg, 1998.
  169. P. Neittaanmäki and S. Repin. Reliable Methods for Computer Simulation: Error Control and Posteriori Estimates. Elsevier, Amsterdam, 2004.
  170. J. Nitsche. über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36:9–15, 1971. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday.
  171. Space-time methods for time-dependent partial differential equations. Oberwolfach reports, 14(1):863–947, 2017.
  172. Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math., 104(4):515–538, 2006.
  173. A safeguarded dual weighted residual method. IMA J. Numer. Anal., 29(1):126–140, 2009.
  174. J. Oden and S. Prudhomme. Estimation of modeling error in computational mechanics. J. Comput. Phys., 182(2):496 – 515, 2002.
  175. J. T. Oden. Adaptive multiscale predictive modelling. Acta Numer., 27:353–450, 2018.
  176. D. Pardo. Multigoal-oriented adaptivity for hp-finite element methods. Procedia Comput. Sci., 1(1):1953 – 1961, 2010.
  177. Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev., 42(2):247–264, 2000.
  178. Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys., 200(2):769–794, Nov. 2004.
  179. S. Prudhomme and J. T. Oden. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng., 176(1-4):313–331, 1999.
  180. Practical methods for a posteriori error estimation in engineering applications. Int. J. Numer. Methods Eng., 56(8):1193–1224, 2003.
  181. A. Rademacher. Adaptive finite element methods for nonlinear hyperbolic problems of second order. PhD thesis, Technische Universität Dortmund, 2009.
  182. A. Rademacher. Mesh and model adaptivity for frictional contact problems. Numer. Math, 142:465–523, 2019.
  183. A. Rademacher and A. Schröder. Dual weighted residual error control for frictional contact problems. Comput. Methods Appl. Math., 15(3):391–413, 2015.
  184. R. Rannacher and F.-T. Suttmeier. A feed-back approach to error control in finite element methods: application to linear elasticity. Comput. Mech., 19(5):434–446, 1997.
  185. R. Rannacher and F.-T. Suttmeier. A posteriori error control in finite element methods via duality techniques: application to perfect plasticity. Comput. Mech., 21(2):123–133, 1998.
  186. R. Rannacher and F.-T. Suttmeier. A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Methods Appl. Mech. Eng., 176(1-4):333 – 361, 1999.
  187. R. Rannacher and F.-T. Suttmeier. Error estimation and adaptive mesh design for FE models in elasto-plasticity. In E. Stein, editor, Error-Controlled Adaptive FEMs in Solid Mechanics. John Wiley, 2000.
  188. R. Rannacher and B. Vexler. Adaptive finite element discretization in pde-based optimization. GAMM-Mitteilungen, 33(2):177–193, 2010.
  189. R. Rannacher and J. Vihharev. Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. J. Numer. Math., 21(1):23–61, 2013.
  190. Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error. J. Numer. Math., 18(4):303–327, 2010.
  191. S. Repin. A posteriori estimates for partial differential equations, volume 4 of RSCAM. de Gruyter, Berlin, 2008.
  192. Accuracy of Mathematical Models: Dimension Reduction, Homogenization, and Simplification. European Mathematical Society, 2020.
  193. T. Richter. Parallel Multigrid Method for Adaptive Finite Elements with Application to 3D Flow Problems. PhD thesis, University of Heidelberg, 2005.
  194. T. Richter. A posteriori error estimation and anisotropy detection with the dual-weighted residual method. Int. J. Numer. Methods Fluids, 62(1):90–118, 2010.
  195. T. Richter. Goal-oriented error estimation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng., 223/224:28–42, 2012.
  196. T. Richter. Fluid-structure Interactions. Models, Analysis and Finite Elements, volume 118 of Lecture notes in computational science and engineering. Springer, 2017.
  197. T. Richter and T. Wick. Variational localizations of the dual weighted residual estimator. J. Comput. Appl. Math., 279:192–208, 2015.
  198. B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, 2008.
  199. Neural network guided adjoint computations in dual weighted residual error estimation. SN Applied Sciences, 4(2):62, Jan 2022.
  200. Tensor-Product Space-Time Goal-Oriented Error Control and Adaptivity With Partition-of-Unity Dual-Weighted Residuals for Nonstationary Flow Problems. Comput. Methods Appl. Math., 24(1):185–214, 2024.
  201. T. Roubíc̆ek. Nonlinear Partial Differential Equations with Applications, volume 153 of International Series of Numerical Mathematics. Springer, Basel, second edition, 2013.
  202. Benchmark computations of laminar flow around a cylinder. In Flow simulation with high-performance computers II, pages 547–566. Springer, 1996.
  203. M. Schmich and B. Vexler. Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput., 30(1):369 – 393, 2008.
  204. A. Schröder and A. Rademacher. Goal-oriented error control in adaptive mixed FEM for Signorini’s problem. Comput. Methods Appl. Mech. Eng., 200(1-4):345–355, 2011.
  205. Goal-oriented a posteriori error control for nonstationary convection-dominated transport problems. ArXiv e-prints, Jan. 2016.
  206. W. Sierpiński. General topology. Mathematical Expositions, No. 7. University of Toronto Press, Toronto, 1952. Translated by C. Cecilia Krieger.
  207. M. Soszyńska and T. Richter. Adaptive time-step control for a monolithic multirate scheme coupling the heat and wave equation. BIT Numerical Mathematics, 2021.
  208. O. Steinbach. Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math., 15(4):551–566, 2015.
  209. O. Steinbach and H. Yang. Space-time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution. In Space-Time Methods: Application to Partial Differential Equations, volume 25 of Radon Series on Computational and Applied Mathematics, chapter 7, pages 207–248. de Gruyter, Berlin, 2019.
  210. R. Stevenson. Optimality of a standard adaptive finite element method. Found. Comput. Math., 7(2):245–269, 2007.
  211. R. Stevenson. The completion of locally refined simplicial partitions created by bisection. Math. Comp., 77(261):227–241, 2008.
  212. Dual weighted residual error estimation for the finite cell method. J. Numer. Math., 27(2), 2019.
  213. F. Suttmeier. Numerical solution of Variational Inequalities by Adaptive Finite Elements. Vieweg+Teubner, 2008.
  214. T. Tezduyar and K. Takizawa. Space–time computations in practical engineering applications: a summary of the 25-year history. Comp. Mech., 63:747–753, 2019.
  215. J. Thiele. Error-controlled space-time finite elements, algorithms, and implementations for nonstationary problems. PhD thesis, Leibniz University Hannover, 2024.
  216. J. P. Thiele. jpthiele/pu-dwr-combustion: v1.0.0, Feb. 2024.
  217. J. P. Thiele and T. Wick. jpthiele/pu-dwr-diffusion: v1.0.0, Feb. 2024.
  218. J. P. Thiele and T. Wick. Numerical Modeling and Open-Source Implementation of Variational Partition-of-Unity Localizations of Space-Time Dual-Weighted Residual Estimators for Parabolic Problems. J. Sci. Comput., 99(25), 2024.
  219. V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Number 25 in Springer Series in Computational Mathematics. Springer, 1997.
  220. Worst-case multi-objective error estimation and adaptivity. Comput. Methods Appl. Mech. Eng., 313:723–743, 2017.
  221. Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints. Comput. Methods Appl. Mech. Eng., 200(37-40):2738–2757, 2011.
  222. R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Advances in Numerical Mathematics. Wiley-Teubner, 1996.
  223. B. Vexler and W. Wollner. Adaptive Finite Elements for Elliptic Optimization Problems with Control Constraints. SIAM J. Control Opt., 47(1):509–534, 2008.
  224. Visit. Visit: an interactive parallel visualization and graphical analysis tool, 2000.
  225. S. Weißer and T. Wick. The Dual-Weighted Residual Estimator Realized on Polygonal Meshes. Comput. Methods Appl. Math., 18(4):753–776, 2018.
  226. T. Wick. Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics. PhD thesis, University of Heidelberg, 2011.
  227. T. Wick. Goal-oriented mesh adaptivity for fluid-structure interaction with application to heart-valve settings. Arch. Mech. Eng., LIX(1):73–99, 2012.
  228. T. Wick. Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity. Comput. Mech., 57(6):1017–1035, 2016.
  229. T. Wick. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. Radon Series on Computational and Applied Mathematics, Band 28, de Gruyter, 2020.
  230. T. Wick. Dual-Weighted Residual A Posteriori Error Estimates for a Penalized Phase-Field Slit Discontinuity Problem. Comput. Methods Appl. Math., 21(3):693–707, 2021.
  231. E. Zeidler. Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York, 1990.
  232. W. Zulehner. A short note on inf-sup conditions for the Taylor-Hood family Qksubscript𝑄𝑘Q_{k}italic_Q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT-Qk−1subscript𝑄𝑘1Q_{k-1}italic_Q start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT. arXiv preprint arXiv:2205.14223, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.