Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Federated Learning for Internet of Intelligence (2405.17453v1)

Published 22 May 2024 in cs.NI, cs.SY, and eess.SY

Abstract: One key vision of intelligent Internet of Things (IoT) is to provide connected intelligence for a large number of application scenarios, such as self-driving cars, industrial manufacturing, and smart city. However, existing centralized or federated learning paradigms have difficulties in coordinating heterogeneous resources in distributed IoT environments. In this article, we introduce a semi-federated learning (SemiFL) framework to tackle the challenges of data and device heterogeneity in massive IoT networks. In SemiFL, only users with sufficient computing resources are selected for local model training, while the remaining users only transmit raw data to the base station for remote computing. By doing so, SemiFL incorporates conventional centralized and federated learning paradigms into a harmonized framework that allows all devices to participate in the global model training regardless of their computational capabilities and data distributions. Furthermore, we propose a next-generation multiple access scheme by seamlessly integrating communication and computation over the air. This achieves the concurrent transmission of raw data and model parameters in a spectrum-efficient manner. With their abilities to change channels and charge devices, two emerging techniques, reconfigurable intelligent surface and wireless energy transfer, are merged with our SemiFL framework to enhance its performance in bandwidth- and energy-limited IoT networks, respectively. Simulation results are presented to demonstrate the superiority of our SemiFL for achieving edge intelligence among computing-heterogeneous IoT devices.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wanli Ni (42 papers)
  2. Zhaohui Yang (193 papers)