Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A numerical integration scheme for vectorised phase-space of one-dimensional collision-free, electrostatic systems (2405.16916v1)

Published 27 May 2024 in physics.plasm-ph and physics.comp-ph

Abstract: The kinetic analyses of many-particle soft matter often employ many simulation studies of various physical phenomena which supplement the experimental limitations or compliment the theoretical findings of the study. Such simulations are generally conducted by the numerical integration techniques of the governing equations. In the typical case of collisionless electrostatic systems such as electrostatic plasmas, the Vlasov-Poisson (VP) equation system governs the dynamical evolution of the particle phase-space. The one-dimensional position-velocity (1D-1V) particle phase-space, on the other hand, is known to exhibit direct analogy with ordinary two-dimensional fluids, wherein the Vlasov equation resembles the fluid continuity equation of an in-compressible fluid. On the basis of this fluid-analogy, we present, in this work, a new numerical integration scheme which treats the 1D-1V phase-space as a two-dimensional fluid vector space. We then perform and present analyses of numerical accuracy of this scheme and compare its speed and accuracy with the well-known finite splitting scheme, which is a standardised technique for the numerical Vlasov-Poisson integration. Finally, we show some simulation results of the 1D collisionless electrostatic plasma which highlight the higher speed and accuracy of the new scheme. This work presents a fast and sufficiently accurate numerical integration technique of the VP system which can be directly employed in various simulation studies of many particle systems, including plasmas.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Van Kampen, N. G., “On the theory of stationary waves in plasmas,” Physica 21(6-10), 949–963 (1955).
  2. Landau, L. D., “On the vibrations of the electronic plasma,” J. Phys. (USSR) 10, 25–34 (1946).
  3. Manfredi, G., “Long-time behavior of nonlinear landau damping,” Physical Review Letters 79, 2815–2818 (10 1997).
  4. Brodin, G., “Nonlinear Landau Damping,” Physical Review Letters 78, 1263 (2 1997).
  5. Sayal, V. K. and Sharma, S. R., “Electron kinetic effects on an ion-acoustic rarefactive soliton in a two-electron temperature plasma,” Physics Letters A 151(1-2) (1990).
  6. Vlasov, A. A., “On vibration properties of electron gas,” Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 8(3), 291 (1938).
  7. Berk, H. L., Nielsen, C. E., and Roberts, K. V., “Phase Space Hydrodynamics of Equivalent Nonlinear Systems: Experimental and Computational Observations,” The Physics of Fluids 13, 980–995 (4 1970).
  8. Schamel, H., “Electron holes, ion holes and double layers: Electrostatic phase space structures in theory and experiment,” Physics reports 140(3), 161–191 (1986).
  9. Schamel, H., “Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics,” Physics of Plasmas 19(2), 20501 (2012).
  10. Lobo, A. and Sayal, V. K., “Theory of electron and ion holes as vortices in the phase-space of collision-less plasmas - NASA/ADS,” (2023).
  11. Forslund, D. W., “Fundamentals of plasma simulation,” Space Science Reviews 42, 3–16 (10 1985).
  12. Watanabe, T. H., Sugama, H., and Sato, T., “A Nondissipative Simulation Method for the Drift Kinetic Equation,” Journal of the Physical Society of Japan 70, 3565–3576 (11 2001).
  13. Aminmansoor, F. and Abbasi, H., “Hybrid (Vlasov-Fluid) simulation of ion-acoustic soliton chain formation and validity of Korteweg de-Vries model,” Physics of Plasmas 22(8) (2015).
  14. Turikov, V. A., “Computer simulation of the formation of langmuir solitons and holes in a cylindrical magnetized plasma column,” tech. rep., Risoe national lab. (1978).
  15. Filbet, F., Sonnendrücker, E., and Bertrand, P., “Conservative numerical schemes for the Vlasov equation,” Journal of Computational Physics 172, 166–187 (9 2001).
  16. Morse, R. L. and Nielson, C. W., “One-, two-, and three-dimensional numerical simulation of two-beam plasmas,” Physical Review Letters 23(19), 1087 (1969).
  17. Colombi, S. and Touma, J., “Vlasov-Poisson: The waterbag method revisited,” Communications in Nonlinear Science and Numerical Simulation 13(1 SPEC. ISS.) (2008).
  18. Filbet, F. and Sonnendrücker, E., “Comparison of Eulerian Vlasov solvers,” Computer Physics Communications 150, 247–266 (2 2003).
  19. Cheng, C. Z. and Knorr, G., “The integration of the vlasov equation in configuration space,” Journal of Computational Physics 22, 330–351 (11 1976).
  20. Courant, R., Friedrichs, K., and Lewy, H., “Über die partiellen Differenzengleichungen der mathematischen Physik,” Mathematische Annalen 100, 32–74 (12 1928).
  21. Guio, P., Børve, S., Daldorff, L. K. S., Lynov, J. P., Michelsen, P., Pécseli, H. L., Rasmussen, J. J., Saeki, K., and Trulsen, J., “Nonlinear Processes in Geophysics Phase space vortices in collisionless plasmas,” Nonlinear Processes in Geophysics 10, 75–86 (2003).
  22. Hutchinson, I. H., “Electron holes in phase space: What they are and why they matter,” Physics of Plasmas 24, 055601 (5 2017).
  23. Crank, J. and Nicolson, P., “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Advances in Computational Mathematics 6(1), 207–226 (1996).
  24. Charney, J. G., Fjörtoft, R., and Neumann, J. v., “Numerical Integration of the Barotropic Vorticity Equation,” Tellus A: Dynamic Meteorology and Oceanography 2, 237–254 (1 1950).
  25. Gazdag, J., “Numerical solution of the Vlasov equation with the accurate space derivative method,” Journal of Computational Physics 19(1) (1975).
  26. Gould, R. W., O’Neil, T. M., and Malmberg, J. H., “Plasma Wave Echo,” Physical Review Letters 19, 219–222 (7 1967).
  27. Malmberg, J. H., Wharton, C. B., Gould, R. W., and O’Neil, T. M., “Plasma wave echo experiment,” Physical Review Letters 20(3) (1968).
  28. Hou, Y. W., Ma, Z. W., and Yu, M. Y., “The plasma wave echo revisited,” Physics of Plasmas 18, 012108 (1 2011).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.