Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Eventually positive semigroups: spectral and asymptotic analysis (2405.16371v2)

Published 25 May 2024 in math.FA and math.SP

Abstract: The spectral theory of semigroup generators is a crucial tool for analysing the asymptotic properties of operator semigroups. Typically, Tauberian theorems, such as the ABLV theorem, demand extensive information about the spectrum to derive convergence results. However, the scenario is significantly simplified for positive semigroups on Banach lattices. This observation extends to the broader class of eventually positive semigroups -- a phenomenon observed in various concrete differential equations. In this paper, we investigate the spectral and asymptotic properties of eventually positive semigroups, focusing particularly on the persistently irreducible case. Our findings expand upon the existing theory of eventual positivity, offering new insights into the cyclicity of the peripheral spectrum and asymptotic trends. Notably, several arguments for positive operators and semigroups do not apply in our context, necessitating the use of ultrapower arguments to circumvent these challenges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. On the boundary spectrum of dominated C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroups. Semigroup Forum, 38(2):129–139, 1989. doi:10.1007/BF02573226.
  2. Growth rate of eventually positive Kreiss bounded C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroups on Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and 𝒞⁢(K)𝒞𝐾\mathcal{C}(K)caligraphic_C ( italic_K ). Journal of Evolution Equations, 23(1):18, 2023. Id/No 7. doi:10.1007/s00028-022-00860-0.
  3. Sahiba Arora. Locally eventually positive operator semigroups. Journal of Operator Theory, 88(1):203–242, 2022. doi:10.7900/jot.2021jan26.2316.
  4. Sahiba Arora. Long-term behavior of operator semigroups and (anti-)maximum principles. PhD thesis, Technische Universität Dresden, 2023. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-834573.
  5. Spectrum and convergence of eventually positive operator semigroups. Semigroup Forum, 103(3):791–811, 2021. doi:10.1007/s00233-021-10204-y.
  6. Stability of (eventually) positive semigroups on spaces of continuous functions. Comptes Rendus. Mathématique. Académie des Sciences, Paris, 360:771–775, 2022. doi:10.5802/crmath.323.
  7. Criteria for eventual domination of operator semigroups and resolvents. In Operators, Semigroups, Algebras and Function Theory. IWOTA 2021, volume 292 of Operator Theory: Advances and Applications, pages 1–26. Springer International Publishing, 2023. doi:10.1007/978-3-031-38020-4_1.
  8. Irreducibility of eventually positive semigroups. To appear in Studia Mathematica, 2024. arXiv:2307.04627.
  9. Positive operator semigroups: From finite to infinite dimensions, volume 257. Basel: Birkhäuser/Springer, 2017. doi:10.1007/978-3-319-42813-0.
  10. Schrödinger and polyharmonic operators on infinite graphs: parabolic well-posedness and p𝑝pitalic_p-independence of spectra. Journal of Mathematical Analysis and Applications, 495(2):44, 2021. Id/No 124748. doi:10.1016/j.jmaa.2020.124748.
  11. A combinatorial approach to matrix theory and its applications. Discrete Mathematics and its Applications. Boca Raton, FL: CRC Press, 2009. doi:10.1201/9781420082241.
  12. Vicent Caselles. On the peripheral spectrum of positive operators. Israel Journal of Mathematics, 58:144–160, 1987. doi:10.1007/BF02785673.
  13. Daniel Daners. Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator. Positivity, 18(2):235–256, 2014. doi:10.1007/s11117-013-0243-7.
  14. The role of domination and smoothing conditions in the theory of eventually positive semigroups. Bulletin of the Australian Mathematical Society, 96(2):286–298, 2017. doi:10.1017/S0004972717000260.
  15. A criterion for the uniform eventual positivity of operator semigroups. Integral Equations and Operator Theory, 90(4):19, 2018. Id/No 46. doi:10.1007/s00020-018-2478-y.
  16. Towards a perturbation theory for eventually positive semigroups. Journal of Operator Theory, 79(2):345–372, 2018. doi:10.7900/jot.2017mar29.2148.
  17. Eventually and asymptotically positive semigroups on Banach lattices. Journal of Differential Equations, 261(5):2607–2649, 2016. doi:10.1016/j.jde.2016.05.007.
  18. Eventually positive semigroups of linear operators. Journal of Mathematical Analysis and Applications, 433(2):1561–1593, 2016. doi:10.1016/j.jmaa.2015.08.050.
  19. Local uniform convergence and eventual positivity of solutions to biharmonic heat equations. Differential Integral Equations, 36:727–756, 2023. doi:10.57262/die036-0910-727.
  20. The Bi-Laplacian with Wentzell boundary conditions on Lipschitz domains. Integral Equations and Operator Theory, 93(2):26, 2021. Id/No 13. doi:10.1007/s00020-021-02624-w.
  21. One-parameter semigroups for linear evolution equations, volume 194. Berlin: Springer, 2000. doi:10.1007/b97696.
  22. Jochen Glück. Invariant sets and long time behaviour of operator semigroups. PhD thesis, Universität Ulm, 2016. doi:10.18725/OPARU-4238.
  23. Jochen Glück. On the peripheral spectrum of positive operators. Positivity, 20(2):307–336, 2016. doi:10.1007/s11117-015-0357-1.
  24. Jochen Glück. Towards a Perron-Frobenius theory for eventually positive operators. Journal of Mathematical Analysis and Applications, 453(1):317–337, 2017. doi:10.1016/j.jmaa.2017.03.071.
  25. Jochen Glück. Growth rates and the peripheral spectrum of positive operators. Houston Journal of Mathematics, 44(3):847–872, 2018. URL: www.math.uh.edu/~hjm/restricted/pdf44(3)/08glueck.pdf.
  26. Jochen Glück. Evolution equations with eventually positive solutions. European Mathematical Society Magazine, 123:4–11, 2022. doi:10.4171/MAG-65.
  27. Eventual domination for linear evolution equations. Mathematische Zeitschrift, 299(3-4):1421–1443, 2021. doi:10.1007/s00209-021-02721-x.
  28. Non-positivity of the heat equation with non-local Robin boundary conditions. 2024. Preprint. arXiv:2404.15114v1.
  29. Almost interior points in ordered Banach spaces and the long-term behaviour of strongly positive operator semigroups. Studia Mathematica, 254(3):237–263, 2020. doi:10.4064/sm190111-18-10.
  30. Jochen Glück and Manfred P. H. Wolff. Long-term analysis of positive operator semigroups via asymptotic domination. Positivity, 23(5):1113–1146, 2019. doi:10.1007/s11117-019-00655-7.
  31. Bi-Laplacians on graphs and networks. Journal of Evolution Equations, 20(1):191–232, 2020. doi:10.1007/s00028-019-00523-7.
  32. Higher-order operators on networks: hyperbolic and parabolic theory. Integral Equations and Operator Theory, 92(6):22, 2020. Id/No 50. doi:10.1007/s00020-020-02610-8.
  33. Stefan Heinrich. Ultraproducts in Banach space theory. Journal für die Reine und Angewandte Mathematik, 313:72–104, 1980. doi:10.1515/crll.1980.313.72.
  34. Laplacians with point interactions – expected and unexpected spectral properties. In Semigroups of operators – theory and applications, pages 47–67. Cham: Springer, 2020. doi:10.1007/978-3-030-46079-2_3.
  35. David C. Lay. Characterizations of the essential spectrum of F.E. Browder. Bulletin of the American Mathematical Society, 74:246–248, 1968. doi:10.1090/S0002-9904-1968-11905-6.
  36. Über das Spektrum positiver Operatoren. Mathematische Zeitschrift, 108:15–32, 1968. doi:10.1007/BF01110453.
  37. C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroups norm continuous at infinity. Semigroup Forum, 52(2):213–224, 1996. doi:10.1007/BF02574097.
  38. Peter Meyer-Nieberg. Banach lattices. Berlin, Heidelberg: Springer-Verlag, 1991. doi:10.1007/978-3-642-76724-1.
  39. Jonathan Mui. Spectral properties of locally eventually positive operator semigroups. Semigroup Forum, 106:460–480, 2023. doi:10.1007/s00233-023-10347-0.
  40. Rainer Nagel, editor. One-parameter semigroups of positive operators, volume 1184 of Lecture Notes in Mathematics. Cham: Springer, 1986. doi:10.1007/BFb0074922.
  41. Reachability and holdability of nonnegative states. SIAM Journal on Matrix Analysis and Applications, 30(2):700–712, 2008. doi:10.1137/070693850.
  42. Marco Peruzzetto. On eventual regularity properties of operator-valued functions. Studia Mathematica, 265(2):141–176, 2022. doi:10.4064/sm201202-21-10.
  43. Frank Räbiger and Manfred P. H. Wolff. Spectral and asymptotic properties of resolvent-dominated operators. Journal of the Australian Mathematical Society. Series A, 68(2):181–201, 2000. doi:10.1017/S1446788700001944.
  44. Helmut H. Schaefer. Banach lattices and positive operators, volume 215. Cham: Springer, 1974. doi:10.1007/978-3-642-65970-6.
  45. Horst R. Thieme. Balanced exponential growth of operator semigroups. Journal of Mathematical Analysis and Applications, 223(1):30–49, 1998. doi:10.1006/jmaa.1998.5952.
  46. Glenn F. Webb. An operator-theoretic formulation of asynchronous exponential growth. Transactions of the American Mathematical Society, 303:751–763, 1987. doi:10.2307/2000695.
  47. Stephen Willard. General topology. Addison-Wesley Series in Mathematics. Addison-Wesley Publishing Company, 1970.
  48. Kosaku Yosida. Functional analysis. Berlin: Springer-Verlag, Reprint of the 6th edition, 1994. doi:10.1007/978-3-642-61859-8.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube