Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Aggregation with Latent Generative Replay for Federated Continual Learning of Socially Appropriate Robot Behaviours (2405.15773v1)

Published 16 Mar 2024 in cs.RO, cs.AI, and cs.LG

Abstract: For widespread real-world applications, it is beneficial for robots to explore Federated Learning (FL) settings where several robots, deployed in parallel, can learn independently while also sharing their learning with each other. This work explores a simulated living room environment where robots need to learn the social appropriateness of their actions. We propose Federated Root (FedRoot), a novel weight aggregation strategy which disentangles feature learning across clients from individual task-based learning. Adapting popular FL strategies to use FedRoot instead, we present a novel FL benchmark for learning the social appropriateness of different robot actions in diverse social configurations. FedRoot-based methods offer competitive performance compared to others while offering sizeable (up to 86% for CPU usage and up to 72% for GPU usage) reduction in resource consumption. Furthermore, real-world interactions require social robots to dynamically adapt to changing environmental and task settings. To facilitate this, we propose Federated Latent Generative Replay (FedLGR), a novel Federated Continual Learning (FCL) strategy that uses FedRoot-based weight aggregation and embeds each client with a generator model for pseudo-rehearsal of learnt feature embeddings to mitigate forgetting in a resource-efficient manner. Our benchmark results demonstrate that FedRoot-based FCL methods outperform other methods while also offering sizeable (up to 84% for CPU usage and up to 92% for GPU usage) reduction in resource consumption, with FedLGR providing the best results across evaluations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.