The Exact Relativistic Scalar Quasibound States of The Dyonic Kerr-Sen Black Hole: Quantized Energy, and Hawking Radiation (2405.15219v2)
Abstract: We consider Klein-Gordon equation in the Dyonic Kerr-Sen black hole background, which is the charged rotating axially symmetric solution of the Einstein-Maxwell-Dilaton-Axion theory of gravity. The black hole incorporates electric, magnetic, dilatonic and axionic charges and is constructed in 3+1 dimensional spacetime. We begin our investigations with the construction of the scalar field's governing equation, i.e., the covariant Klein-Gordon equation. With the help of the ansatz of separation of variables, we successfully separate the polar part, and find the exact solution in terms of Spheroidal Harmonics, while the radial exact solution is obtained in terms of the Confluent Heun function. The quantization of the quasibound state is done by applying the polynomial condition of the Confluent Heun function that gives rise to discrete complex-valued energy levels for massive scalar fields. The real part is the scalar field relativistic quantized energy, while the imaginary part represents the quasibound states's decay. We present all of the sixteen possible exact energy solutions for both massive and massless scalars. We also present the investigation the Hawking radiation of the Dyonic Kerr-Sen black hole's apparent horizon, via the Sigurd-Sannan method by making use of the obtained exact scalar wave functions. The radiation distribution function, and the Hawking temperature are successfully obtained.
- C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17 (2014), 4 doi:10.12942/lrr-2014-4 [arXiv:1403.7377 [gr-qc]].
- J. W. Moffat, “Scalar-tensor-vector gravity theory,” JCAP 03 (2006), 004 doi:10.1088/1475-7516/2006/03/004 [arXiv:gr-qc/0506021 [gr-qc]].
- J. W. Moffat, “A Modified Gravity and its Consequences for the Solar System, Astrophysics and Cosmology,” Int. J. Mod. Phys. D 16 (2008), 2075-2090 doi:10.1142/S0218271807011577 [arXiv:gr-qc/0608074 [gr-qc]].
- T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, “Modified Gravity and Cosmology,” Phys. Rept. 513 (2012), 1-189 doi:10.1016/j.physrep.2012.01.001 [arXiv:1106.2476 [astro-ph.CO]].
- E. Papantonopoulos, “Proceedings of the 7th Aegean Summer School : Beyond Einstein’s theory of gravity. Modifications of Einstein’s Theory of Gravity at Large Distances.: Paros, Greece, September 23-28, 2013,” Lect. Notes Phys. 892 (2015), pp.1-426 doi:10.1007/978-3-319-10070-8
- A. Petrov, J. R. Nascimento and P. Porfirio, “Introduction to Modified Gravity,” Springer, 2020, ISBN 978-3-031-46633-5, 978-3-031-46634-2, 978-3-030-52861-4, 978-3-030-52862-1 doi:10.1007/978-3-031-46634-2 [arXiv:2004.12758 [gr-qc]].
- A. Sen, “Rotating charged black hole solution in heterotic string theory,” Phys. Rev. Lett. 69 (1992), 1006-1009 doi:10.1103/PhysRevLett.69.1006 [arXiv:hep-th/9204046 [hep-th]].
- I. Banerjee, B. Mandal and S. SenGupta, “Implications of Einstein–Maxwell dilaton–axion gravity from the black hole continuum spectrum,” Mon. Not. Roy. Astron. Soc. 500 (2020) no.1, 481-492 doi:10.1093/mnras/staa3232 [arXiv:2007.13980 [gr-qc]].
- D. Wu, S. Q. Wu, P. Wu and H. Yu, “Aspects of the dyonic Kerr-Sen- AdS4 black hole and its ultraspinning version,” Phys. Rev. D 103 (2021) no.4, 044014 doi:10.1103/PhysRevD.103.044014 [arXiv:2010.13518 [gr-qc]].
- R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett. 11 (1963), 237-238 doi:10.1103/PhysRevLett.11.237
- J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg and U. Leonhardt, “Observation of Stimulated Hawking Radiation in an Optical Analogue,” Phys. Rev. Lett. 122 (2019) no.1, 010404 doi:10.1103/PhysRevLett.122.010404 [arXiv:1808.09244 [gr-qc]].
- H. S. Vieira, “Quasibound States, Stability and Wave Functions of the Test Fields in the Consistent 4D Einstein–Gauss–Bonnet Gravity,” Universe 9 (2023) no.5, 205 doi:10.3390/universe9050205 [arXiv:2107.02065 [gr-qc]].
- A. Arvanitaki, M. Baryakhtar and X. Huang, “Discovering the QCD Axion with Black Holes and Gravitational Waves,” Phys. Rev. D 91 (2015) no.8, 084011 doi:10.1103/PhysRevD.91.084011 [arXiv:1411.2263 [hep-ph]].
- D. Baumann, H. S. Chia and R. A. Porto, “Probing Ultralight Bosons with Binary Black Holes,” Phys. Rev. D 99 (2019) no.4, 044001 doi:10.1103/PhysRevD.99.044001 [arXiv:1804.03208 [gr-qc]].
- D. Baumann, H. S. Chia, J. Stout and L. ter Haar, “The Spectra of Gravitational Atoms,” JCAP 12 (2019), 006 doi:10.1088/1475-7516/2019/12/006 [arXiv:1908.10370 [gr-qc]].
- D. Baumann, G. Bertone, J. Stout and G. M. Tomaselli, “Ionization of gravitational atoms,” Phys. Rev. D 105 (2022) no.11, 115036 doi:10.1103/PhysRevD.105.115036 [arXiv:2112.14777 [gr-qc]].
- H. S. Vieira, V. B. Bezerra and C. R. Muniz, “Instability of the charged massive scalar field on the Kerr–Newman black hole spacetime,” Eur. Phys. J. C 82 (2022) no.10, 932 doi:10.1140/epjc/s10052-022-10908-7 [arXiv:2107.02562 [gr-qc]].
- D. Senjaya, “Exact analytical quasibound states of a scalar particle around a slowly rotating black hole,” JHEAp 40 (2023), 49-54 doi:10.1016/j.jheap.2023.10.002
- D. Senjaya, “Exact analytical quasibound states of a scalar particle around a Reissner-Nordström black hole,” Phys. Lett. B 848 (2024), 138373 doi:10.1016/j.physletb.2023.138373
- D. Senjaya, “Exact massive and massless scalar quasibound states around a charged Lense-Thirring black hole,” Phys. Lett. B 849 (2024), 138414 doi:10.1016/j.physletb.2023.138414
- D. Senjaya, “Exact scalar quasibound states solutions of f(R) theory’s static spherically symmetric black hole,” JHEAp 41 (2024), 61-66 doi:10.1016/j.jheap.2024.01.004
- D. Senjaya, “Exact massless scalar quasibound states of the Ernst black hole,” Eur. Phys. J. C 84 (2024) no.1, 57 doi:10.1140/epjc/s10052-024-12422-4
- D. Senjaya, “Exact massive and massless scalar quasibound states solutions of the Einstein–Maxwell-dilaton (EMD) black hole,” Eur. Phys. J. C 84 (2024) no.3, 229 doi:10.1140/epjc/s10052-024-12600-4
- D. Senjaya, “Exact phonon quasibound states around an optical black hole,” Eur. Phys. J. C 84 (2024) no.4, 388 doi:10.1140/epjc/s10052-024-12755-0
- S. Jana and S. Kar, “Shadows in dyonic Kerr-Sen black holes,” Phys. Rev. D 108 (2023) no.4, 044008 doi:10.1103/PhysRevD.108.044008 [arXiv:2303.14513 [gr-qc]].
- D. Senjaya and A. S. Rivera, “Canonical Quantization of Neutral and Charged Static Black Hole as a Gravitational Atom,” J. Phys. Conf. Ser. 1719 (2021) no.1, 012019 doi:10.1088/1742-6596/1719/1/012019 [arXiv:2012.12606 [gr-qc]].
- S. Sannan, “Heuristic Derivation of the Probability Distributions of Particles Emitted by a Black Hole,” Gen. Rel. Grav. 20 (1988), 239-246 doi:10.1007/BF00759183
- Z. Zhao and J. Y. Zhu, “Damour-Ruffini and Unruh theories of the Hawking effect,” Int. J. Theor. Phys. 33 (1994), 2147-2155 doi:10.1007/BF00675798
- C. M. Harris and P. Kanti, “Hawking radiation from a (4+n)-dimensional black hole: Exact results for the Schwarzschild phase,” JHEP 10 (2003), 014 doi:10.1088/1126-6708/2003/10/014 [arXiv:hep-ph/0309054 [hep-ph]].
- T. Damour and R. Ruffini, “Black Hole Evaporation in the Klein-Sauter-Heisenberg-Euler Formalism,” Phys. Rev. D 14 (1976), 332-334 doi:10.1103/PhysRevD.14.332
- C. Chen and J. Jing, “Radiation fluxes of gravitational, electromagnetic, and scalar perturbations in type-D black holes: an exact approach,” JCAP 11 (2023), 070 doi:10.1088/1475-7516/2023/11/070 [arXiv:2307.14616 [gr-qc]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.