Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fluctuations around the mean-field limit for attractive Riesz potentials in the moderate regime (2405.15128v1)

Published 24 May 2024 in math.PR and math.AP

Abstract: A central limit theorem is shown for moderately interacting particles in the whole space. The interaction potential approximates singular attractive or repulsive potentials of sub-Coulomb type. It is proved that the fluctuations become asymptotically Gaussians in the limit of infinitely many particles. The methodology is inspired by the classical work of Oelschl\"ager on fluctuations for the porous-medium equation. The novelty in this work is that we can allow for attractive potentials in the moderate regime and still obtain asymptotic Gaussian fluctuations. The key element of the proof is the mean-square convergence in expectation for smoothed empirical measures associated to moderately interacting $N$-particle systems with rate $N{-1/2-\varepsilon}$ for some $\varepsilon>0$. To allow for attractive potentials, the proof uses a quantitative mean-field convergence in probability with any algebraic rate and a law-of-large-numbers estimate as well as a systematic separation of the terms to be estimated in a mean-field part and a law-of-large-numbers part.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.