Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Residual eccentricity as a systematic uncertainty on the formation channels of binary black holes (2405.14945v2)

Published 23 May 2024 in astro-ph.HE and gr-qc

Abstract: Resolving the formation channel(s) of merging binary black holes is a key goal in gravitational-wave astronomy. The orbital eccentricity is believed to be a precious tracer of the underlying formation pathway, but is largely dissipated during the usually long inspiral between black hole formation and merger. Most gravitational-wave sources are thus expected to enter the sensitivity windows of current detectors on configurations that are compatible with quasi-circular orbits. In this paper, we investigate the impact of "negligible" residual eccentricity -- lower than currently detectable by LIGO/Virgo -- on our ability to infer the formation history of binary black holes, focusing in particular on their spin orientations. We trace the evolution of both observed and synthetic gravitational-wave events backward in time, while resampling their residual eccentricities to values that are below the detectability threshold. Eccentricities in-band as low as $\sim 10{-4}$ can lead to significant biases when reconstructing the spin directions, especially in the case of loud, highly precessing systems. Residual eccentricity thus act like a systematic uncertainty for our astrophysical inference. As a mitigation strategy, one can marginalize the posterior distribution over the residual eccentricity using astrophysical predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. B. P. Abbott et al., Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
  2. R. Abbott et al., Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-qc] .
  3. R. Abbott et al., Phys. Rev. D 109, 022001 (2024), arXiv:2108.01045 [gr-qc] .
  4. R. Abbott et al., Phys. Rev. X 13, 041039 (2023a), arXiv:2111.03606 [gr-qc] .
  5. M. Mapelli, in Handbook of Gravitational Wave Astronomy (Springer, 2021) p. 16.
  6. D. Gerosa and M. Fishbach, Nat. Astron. 5, 749 (2021), arXiv:2105.03439 [astro-ph.HE] .
  7. I. Mandel and A. Farmer, Phys. Rep. 955, 1 (2022), arXiv:1806.05820 [astro-ph.HE] .
  8. I. Mandel and F. S. Broekgaarden, Living Rev. Relativ. 25, 1 (2022), arXiv:2107.14239 [astro-ph.HE] .
  9. A. Q. Cheng, M. Zevin, and S. Vitale, Astrophys. J. 955, 127 (2023), arXiv:2307.03129 [astro-ph.HE] .
  10. S. Stevenson, C. P. L. Berry, and I. Mandel, Mon. Not. R. Astron. Soc. 471, 2801 (2017), arXiv:1703.06873 [astro-ph.HE] .
  11. A. Olejak and K. Belczynski, Astrophys. J. Lett. 921, L2 (2021), arXiv:2109.06872 [astro-ph.HE] .
  12. S. Banerjee, A. Olejak, and K. Belczynski, Astrophys. J. 953, 80 (2023), arXiv:2302.10851 [astro-ph.HE] .
  13. J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, Astrophys. J. 784, 71 (2014), arXiv:1308.2964 [astro-ph.HE] .
  14. J. Samsing, Phys. Rev. D 97, 103014 (2018), arXiv:1711.07452 [astro-ph.HE] .
  15. L. E. Kidder, Phys. Rev. D 52, 821 (1995), arXiv:gr-qc/9506022 [gr-qc] .
  16. I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Mon. Not. R. Astron. Soc. 490, 5210 (2019), arXiv:1909.05466 [astro-ph.HE] .
  17. I. M. Romero-Shaw, D. Gerosa, and N. Loutrel, Mon. Not. R. Astron. Soc. 519, 5352 (2023), arXiv:2211.07528 [astro-ph.HE] .
  18. G. Fumagalli and D. Gerosa, Phys. Rev. D 108, 124055 (2023), arXiv:2310.16893 [gr-qc] .
  19. M. Mould and D. Gerosa, Phys. Rev. D 105, 024076 (2022), arXiv:2110.05507 [astro-ph.HE] .
  20. N. K. Johnson-McDaniel, S. Kulkarni, and A. Gupta, Phys. Rev. D 106, 023001 (2022), arXiv:2107.11902 [astro-ph.HE] .
  21. R. Abbott et al., Phys. Rev. X 13, 011048 (2023b), arXiv:2111.03634 [astro-ph.HE] .
  22. B. P. Abbott et al., Astrophys. J. 883, 149 (2019b).
  23. A. G. Abac et al.,   (2023), arXiv:2308.03822 [astro-ph.HE] .
  24. I. Romero-Shaw, P. D. Lasky, and E. Thrane, Astrophys. J. 940, 171 (2022), arXiv:2206.14695 [astro-ph.HE] .
  25. P. C. Peters, Phys. Rev. 136, 1224 (1964).
  26. É. Racine, Phys. Rev. D 78, 044021 (2008), arXiv:0803.1820 [gr-qc] .
  27. P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D 91, 024043 (2015), arXiv:1408.1810 [gr-qc] .
  28. I. Romero-Shaw, P. D. Lasky, and E. Thrane, Astrophys. J. Lett. 921, L31 (2021), arXiv:2108.01284 [astro-ph.HE] .
  29. M. Mapelli, Frontiers in Astronomy and Space Sciences 7, 38 (2020), arXiv:2105.12455 [astro-ph.HE] .
  30. F. Antonini and M. Gieles, Mon. Not. R. Astron. Soc. 492, 2936 (2020), arXiv:1906.11855 [astro-ph.HE] .
  31. V. De Renzis and D. Gerosa,  github.com/ViolaDeRenzis/twoprecessingspins, doi.org/10.5281/zenodo.6777952  (2022).
  32. C. J. Moore and D. Gerosa, Phys. Rev. D 104, 083008 (2021), arXiv:2108.02462 [gr-qc] .
  33. A. Klein,   (2021), arXiv:2106.10291 [gr-qc] .
  34. L. S. Finn and D. F. Chernoff, Phys. Rev. D 47, 2198 (1993), arXiv:gr-qc/9301003 [gr-qc] .
  35. D. Gerosa and M. Bellotti, Class. Quantum Grav. 41, 125002 (2024), arXiv:2404.16930 [astro-ph.HE] .
  36. D. Gerosa, github.com/dgerosa/gwdet, doi.org/10.5281/zenodo.889966  (2017).
  37. P. Saini, Mon. Not. R. Astron. Soc. 528, 833 (2024), arXiv:2308.07565 [astro-ph.HE] .
  38. J. Stegmann and F. Antonini, Phys. Rev. D 103, 063007 (2021), arXiv:2012.06329 [astro-ph.HE] .
  39. N. Steinle and M. Kesden, Phys. Rev. D 103, 063032 (2021), arXiv:2010.00078 [astro-ph.HE] .
  40. T. M. Tauris, Astrophys. J. 938, 66 (2022), arXiv:2205.02541 [astro-ph.HE] .

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube