Interaction-induced strong zero modes in short quantum dot chains with time-reversal symmetry (2405.14940v2)
Abstract: We theoretically explore the emergence of strong zero modes in a two-site chain consisting of two quantum dots coupled due to a central dot that mediates electron hopping and singlet superconducting pairing. In the presence of time-reversal symmetry, the on-site Coulomb interaction leads to a three-fold ground-state degeneracy when tuning the system to a sweet spot as a function of the inter-dot couplings. This degeneracy is protected against changes of the dot energies in the same way as "poor man's'' Majorana bound states in short Kitaev chains. In the limit of strong interactions, this protection is maximal and the entire spectrum becomes triply degenerate, indicating the emergence of a ''poor man's'' version of a strong zero mode. We explain the degeneracy and protection by constructing corresponding Majorana Kramers-pair operators and $\mathbb{Z}_3$-parafermion operators. The strong zero modes share many properties of Majorana bound states in short Kitaev chains, including the stability of zero-bias peaks in the conductance and the behavior upon coupling to an additional quantum dot. However, they can be distinguished through finite-bias spectroscopy and the exhibit a different behavior when scaling to longer chains.
- P. Barthelemy and L. M. K. Vandersypen, Quantum dot systems: a versatile platform for quantum simulations, Annalen der Physik 525(10-11), 808 (2013), https://doi.org/10.1002/andp.201300124, https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.201300124.
- Quantum simulation of a fermi–hubbard model using a semiconductor quantum dot array, Nature 548(7665), 70 (2017), 10.1038/nature23022.
- Nagaoka ferromagnetism observed in a quantum dot plaquette, Nature 579(7800), 528 (2020), 10.1038/s41586-020-2051-0.
- Engineering topological states in atom-based semiconductor quantum dots, Nature 606(7915), 694 (2022), 10.1038/s41586-022-04706-0.
- Realizing a robust practical majorana chain in a quantum-dot-superconductor linear array, Nature Communications 3(1), 964 (2012), 10.1038/ncomms1966.
- Tunable Superconducting Coupling of Quantum Dots via Andreev Bound States in Semiconductor-Superconductor Nanowires, Phys. Rev. Lett. 129(26), 267701 (2022), 10.1103/PhysRevLett.129.267701.
- Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires, Nature 612(7940), 448 (2022), 10.1038/s41586-022-05352-2.
- Triplet correlations in cooper pair splitters realized in a two-dimensional electron gas, Nature Communications 14(1), 4876 (2023), 10.1038/s41467-023-40551-z.
- Tunable Crossed Andreev Reflection and Elastic Cotunneling in Hybrid Nanowires, Phys. Rev. X 13(3), 031031 (2023), 10.1103/PhysRevX.13.031031.
- Realization of a minimal Kitaev chain in coupled quantum dots, Nature 614(7948), 445 (2023), 10.1038/s41586-022-05585-1.
- Engineering Majorana bound states in coupled quantum dots in a two-dimensional electron gas, 10.48550/arXiv.2311.03208 (2023), 2311.03208.
- Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states, 10.48550/arXiv.2311.03193 (2023), 2311.03193.
- M. Leijnse and K. Flensberg, Parity qubits and poor man’s Majorana bound states in double quantum dots, Phys. Rev. B 86(13), 134528 (2012), 10.1103/PhysRevB.86.134528.
- Creating and detecting poor man’s Majorana bound states in interacting quantum dots, Phys. Rev. B 106(20), L201404 (2022), 10.1103/PhysRevB.106.L201404.
- Flux-tunable Kitaev chain in a quantum dot array (2024), 2402.07575.
- R. M. Lutchyn, J. D. Sau and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105, 077001 (2010), 10.1103/PhysRevLett.105.077001.
- Helical liquids and majorana bound states in quantum wires, Phys. Rev. Lett. 105, 177002 (2010), 10.1103/PhysRevLett.105.177002.
- A. R. Wright and M. Veldhorst, Localized Many-Particle Majorana Modes with Vanishing Time-Reversal Symmetry Breaking in Double Quantum Dots, Phys. Rev. Lett. 111(9), 096801 (2013), 10.1103/PhysRevLett.111.096801.
- Probing Majorana localization in minimal Kitaev chains through a quantum dot, Phys. Rev. Res. 5(4), 043182 (2023), 10.1103/PhysRevResearch.5.043182.
- Z. Scherübl, A. Pályi and S. Csonka, Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup, Beilstein J. Nanotechnol. 10(1), 363 (2019), 10.3762/bjnano.10.36.
- T. E. O’Brien, A. R. Wright and M. Veldhorst, Many-particle Majorana bound states: Derivation and signatures in superconducting double quantum dots, physica status solidi (b) 252(8), 1731 (2015), 10.1002/pssb.201552019.
- C. D. Batista and G. Ortiz, Generalized Jordan-Wigner Transformations, Phys. Rev. Lett. 86(6), 1082 (2001), 10.1103/PhysRevLett.86.1082.
- J. Alicea and P. Fendley, Topological phases with parafermions: Theory and blueprints, Annu. Rev. Condens. Matter Phys. 7(1), 119 (2016), 10.1146/annurev-conmatphys-031115-011336, 1504.02476.
- L. M. Vasiloiu, A. Tiwari and J. H. Bardarson, Dephasing-enhanced Majorana zero modes in two-dimensional and three-dimensional higher-order topological superconductors, Phys. Rev. B 106(6), L060307 (2022), 10.1103/PhysRevB.106.L060307.
- N. Chepiga and N. Laflorencie, Topological and quantum critical properties of the interacting Majorana chain model, SciPost Physics 14(6), 152 (2023), 10.21468/SciPostPhys.14.6.152.
- No-go theorem for a time-reversal invariant topological phase in noninteracting systems coupled to conventional superconductors, Phys. Rev. B 94, 161110 (2016), 10.1103/PhysRevB.94.161110.
- R. L. R. C. Teixeira and L. G. G. V. Dias da Silva, Edge ℤ3subscriptℤ3\mathbb{Z}_{3}blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT parafermions in fermionic lattices, Phys. Rev. B 105(19), 195121 (2022), 10.1103/PhysRevB.105.195121.
- P. Fendley, Parafermionic edge zero modes in Zn-invariant spin chains, J. Stat. Mech. 2012(11), P11020 (2012), 10.1088/1742-5468/2012/11/P11020.
- Stability of zero modes in parafermion chains, Phys. Rev. B 90(16), 165106 (2014), 10.1103/PhysRevB.90.165106.
- Phase diagram of the Z3subscript𝑍3{Z}_{3}italic_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT parafermionic chain with chiral interactions, Phys. Rev. B 92, 035154 (2015), 10.1103/PhysRevB.92.035154.
- D. J. Clarke, Experimentally accessible topological quality factor for wires with zero energy modes, Phys. Rev. B 96(20), 201109 (2017), 10.1103/PhysRevB.96.201109.
- E. Prada, R. Aguado and P. San-Jose, Measuring Majorana non-locality and spin structure with a quantum dot, Phys. Rev. B 96(8), 085418 (2017), 10.1103/PhysRevB.96.085418, 1702.02525.
- Nonlocality of majorana modes in hybrid nanowires, Phys. Rev. B 98, 085125 (2018), 10.1103/PhysRevB.98.085125.
- Roadmap towards Majorana qubits and nonabelian physics in quantum dot-based minimal Kitaev chains, 10.48550/arXiv.2306.16289 (2023), 2306.16289.
- ℤ4subscriptℤ4\mathbb{Z}_{4}blackboard_Z start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT parafermions in one-dimensional fermionic lattices, Phys. Rev. B 98, 201110 (2018), 10.1103/PhysRevB.98.201110.
- E. Cobanera and G. Ortiz, Fock parafermions and self-dual representations of the braid group, Phys. Rev. A 89(1), 012328 (2014), 10.1103/PhysRevA.89.012328.
- Interaction-induced strong zero modes in short quantum dot chains with time-reversal symmetry, 10.5281/zenodo.11243862 (2024).
- Enhancing the excitation gap of a quantum-dot-based Kitaev chain, 10.48550/arXiv.2310.09106 (2023), 2310.09106.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.