Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Visual State Space Model for Image Deblurring (2405.14343v1)

Published 23 May 2024 in cs.CV

Abstract: Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration. ViTs typically yield superior results in image restoration compared to CNNs due to their ability to capture long-range dependencies and input-dependent characteristics. However, the computational complexity of Transformer-based models grows quadratically with the image resolution, limiting their practical appeal in high-resolution image restoration tasks. In this paper, we propose a simple yet effective visual state space model (EVSSM) for image deblurring, leveraging the benefits of state space models (SSMs) to visual data. In contrast to existing methods that employ several fixed-direction scanning for feature extraction, which significantly increases the computational cost, we develop an efficient visual scan block that applies various geometric transformations before each SSM-based module, capturing useful non-local information and maintaining high efficiency. Extensive experimental results show that the proposed EVSSM performs favorably against state-of-the-art image deblurring methods on benchmark datasets and real-captured images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lingshun Kong (4 papers)
  2. Jiangxin Dong (22 papers)
  3. Ming-Hsuan Yang (376 papers)
  4. Jinshan Pan (80 papers)
Citations (3)