ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation (2405.14125v3)
Abstract: LLMs can elicit unintended and even harmful content when misaligned with human values, posing severe risks to users and society. To mitigate these risks, current evaluation benchmarks predominantly employ expert-designed contextual scenarios to assess how well LLMs align with human values. However, the labor-intensive nature of these benchmarks limits their test scope, hindering their ability to generalize to the extensive variety of open-world use cases and identify rare but crucial long-tail risks. Additionally, these static tests fail to adapt to the rapid evolution of LLMs, making it hard to evaluate timely alignment issues. To address these challenges, we propose ALI-Agent, an evaluation framework that leverages the autonomous abilities of LLM-powered agents to conduct in-depth and adaptive alignment assessments. ALI-Agent operates through two principal stages: Emulation and Refinement. During the Emulation stage, ALI-Agent automates the generation of realistic test scenarios. In the Refinement stage, it iteratively refines the scenarios to probe long-tail risks. Specifically, ALI-Agent incorporates a memory module to guide test scenario generation, a tool-using module to reduce human labor in tasks such as evaluating feedback from target LLMs, and an action module to refine tests. Extensive experiments across three aspects of human values--stereotypes, morality, and legality--demonstrate that ALI-Agent, as a general evaluation framework, effectively identifies model misalignment. Systematic analysis also validates that the generated test scenarios represent meaningful use cases, as well as integrate enhanced measures to probe long-tail risks. Our code is available at https://github.com/SophieZheng998/ALI-Agent.git
- Jingnan Zheng (8 papers)
- Han Wang (418 papers)
- An Zhang (77 papers)
- Tai D. Nguyen (15 papers)
- Jun Sun (210 papers)
- Tat-Seng Chua (359 papers)