Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Principal eigenstate classical shadows (2405.13939v1)

Published 22 May 2024 in quant-ph, cs.IT, cs.LG, and math.IT

Abstract: Given many copies of an unknown quantum state $\rho$, we consider the task of learning a classical description of its principal eigenstate. Namely, assuming that $\rho$ has an eigenstate $|\phi\rangle$ with (unknown) eigenvalue $\lambda > 1/2$, the goal is to learn a (classical shadows style) classical description of $|\phi\rangle$ which can later be used to estimate expectation values $\langle \phi |O| \phi \rangle$ for any $O$ in some class of observables. We consider the sample-complexity setting in which generating a copy of $\rho$ is expensive, but joint measurements on many copies of the state are possible. We present a protocol for this task scaling with the principal eigenvalue $\lambda$ and show that it is optimal within a space of natural approaches, e.g., applying quantum state purification followed by a single-copy classical shadows scheme. Furthermore, when $\lambda$ is sufficiently close to $1$, the performance of our algorithm is optimal--matching the sample complexity for pure state classical shadows.

Citations (2)

Summary

We haven't generated a summary for this paper yet.