Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace Mixed-FEM for Real-Time Heterogeneous Elastodynamics (2405.13730v1)

Published 22 May 2024 in cs.GR

Abstract: We propose a reduced space mixed finite element method (MFEM) built on a Skinning Eigenmode subspace and material-aware cubature scheme. Our solver is well-suited for simulating scenes with large material and geometric heterogeneities in real-time. This mammoth geometry is composed of 98,175 vertices and 531,565 tetrahedral elements and with a heterogenous composition of widely varying materials of muscles ($E= 5\times105$ Pa), joints ($E=1\times105$ Pa), and bone ($E=1\times10{10}$ Pa). The resulting simulation runs at 120 frames per second (FPS).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Optimizing Cubature for Efficient Integration of Subspace Deformations. In ACM SIGGRAPH Asia 2008 Papers (Singapore) (SIGGRAPH Asia ’08). Association for Computing Machinery, New York, NY, USA, Article 165, 10 pages. https://doi.org/10.1145/1457515.1409118
  2. Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (jul 2005), 982–990. https://doi.org/10.1145/1073204.1073300
  3. Jernej Barbič and Yili Zhao. 2011. Real-Time Large-Deformation Substructuring. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Article 91, 8 pages. https://doi.org/10.1145/1964921.1964986
  4. Fast Complementary Dynamics via Skinning Eigenmodes. arXiv:2303.11886 [cs.GR]
  5. Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (jul 2018), 13 pages. https://doi.org/10.1145/3197517.3201387
  6. Parallel programming in OpenMP. Morgan kaufmann.
  7. Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 36, 4, Article 84 (jul 2017), 15 pages. https://doi.org/10.1145/3072959.3073669
  8. Data-Driven Finite Elements for Geometry and Material Design. ACM Trans. Graph. 34, 4, Article 74 (jul 2015), 10 pages. https://doi.org/10.1145/2766889
  9. Numerical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4, Article 120 (jul 2018), 12 pages. https://doi.org/10.1145/3197517.3201386
  10. Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1 (jan 2005), 91–101. https://doi.org/10.1109/TVCG.2005.13
  11. Sparse Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article 73 (jul 2011), 10 pages. https://doi.org/10.1145/2010324.1964968
  12. Eigen v3. http://eigen.tuxfamily.org.
  13. Rig-Space Physics. ACM Trans. Graph. 31, 4, Article 72 (jul 2012), 8 pages. https://doi.org/10.1145/2185520.2185568
  14. Interactive Shape Interpolation through Controllable Dynamic Deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7 (jul 2011), 983–992. https://doi.org/10.1109/TVCG.2010.109
  15. Alec Jacobson et al. 2021. gptoolbox: Geometry Processing Toolbox. http://github.com/alecjacobson/gptoolbox.
  16. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4, Article 77 (jul 2012), 10 pages. https://doi.org/10.1145/2185520.2185573
  17. Bounded Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (jul 2011), 8 pages. https://doi.org/10.1145/2010324.1964973
  18. libigl: A simple C++ geometry processing library. https://libigl.github.io/.
  19. Doug L. James and Dinesh K. Pai. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware. ACM Trans. Graph. 21, 3 (jul 2002), 582–585. https://doi.org/10.1145/566654.566621
  20. Numerical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3, Article 51 (jul 2009), 8 pages. https://doi.org/10.1145/1531326.1531357
  21. Theodore Kim and Doug L. James. 2011. Physics-Based Character Skinning Using Multi-Domain Subspace Deformations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA ’11). Association for Computing Machinery, New York, NY, USA, 63–72. https://doi.org/10.1145/2019406.2019415
  22. Medial Elastics: Efficient and Collision-Ready Deformation via Medial Axis Transform. ACM Trans. Graph. 39, 3, Article 20 (apr 2020), 17 pages. https://doi.org/10.1145/3384515
  23. David I.W. Levin. 2018. Bartels. https://libigl.github.io/.
  24. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (jul 2011), 12 pages. https://doi.org/10.1145/2010324.1964932
  25. A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (jul 1989), 207–214. https://doi.org/10.1145/74334.74355
  26. R Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  27. Data-Free Learning of Reduced-Order Kinematics. (2023).
  28. High-Order Differentiable Autoencoder for Nonlinear Model Reduction. ACM Trans. Graph. 40, 4, Article 68 (jul 2021), 15 pages. https://doi.org/10.1145/3450626.3459754
  29. Energetically Consistent Invertible Elasticity. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics Association, Goslar, DEU, 25–32.
  30. Demetri Terzopoulos and Andrew Witkin. 1988. Physically Based Models with Rigid and Deformable Components. IEEE Comput. Graph. Appl. 8, 6 (nov 1988), 41–51. https://doi.org/10.1109/38.20317
  31. Mixed Variational Finite Elements for Implicit Simulation of Deformables. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New York, NY, USA, Article 40, 8 pages. https://doi.org/10.1145/3550469.3555418
  32. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph. 32, 6, Article 213 (nov 2013), 10 pages. https://doi.org/10.1145/2508363.2508392
  33. Linear Subspace Design for Real-Time Shape Deformation. ACM Trans. Graph. 34, 4, Article 57 (jul 2015), 11 pages. https://doi.org/10.1145/2766952
  34. Expediting Precomputation for Reduced Deformable Simulation. ACM Trans. Graph. 34, 6, Article 243 (nov 2015), 13 pages. https://doi.org/10.1145/2816795.2818089

Summary

We haven't generated a summary for this paper yet.